Come get graded quiz

Announcements
 * Self grade & Reflection Due Wednesday (more in class)
 - Homework Discussion: TLDR: It's important. Make sure you know it now so no problems later.

Self Grade & Reflection

Proof Rubric:
 Validity: logic OK?
 Readability: Easy to understand?
 Concise: More complicated than needs to be?

Provide a point score for each category →

Sample self-grade Activity...

Also
 * Where to find solutions - CANVAS, "Files"
 * Writing style - proofs do not need to be word for word the same as mine
 * Reflection - see resources on website for worksheet
 * Timing - ~30 min (at most 1 hour)
... and now back to your regularly scheduled lesson...

To do computer science, need to write & talk about computer science — use language of math:

Very Precise!

Proofs ≈ 5 paragraph essay

We need to go back and learn how to write words, sentences, sets, statements

Sets

def: a set is an unordered collection of objects. (no repeats!)

ex: Let S be the set of Middlebury computer science profs.

- Prof. Kimmel is in S
- Prof. Watson is not in S.

Sets Page 2
Roster Notation: $A = \{0, 2, 5\}$ means "A is the set containing the elements 0, 2, 5."

For sets "element" = "object"

E: $2 \in A$ means 2 is an element of A

\notin: Prof. Watson $\notin S$ means Prof. Watson is not an element of S.

$A = B$: sets contain exactly the same elements

Sets in Sets: $T = \{x, y, \{g, h\}, k\}$

An element of a set can be another set

Q: Is $g \in T$? Is $\{g, h\} \in T$?

Elements of T are $x, y, \{g, h\}, k$

Also $\{x, y\} \notin T$
Famous Sets

\(\emptyset = \text{empty set} = \{\} \)

\(\mathbb{N} = \text{set of natural numbers} = \{0, 1, 2, 3, \ldots\} \)

\(\mathbb{Z} = \text{set of integers} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \)

\(\mathbb{R} = \text{set of real numbers} \)

\(\mathbb{Q} = \text{set of rational numbers} \)

NOTE: In Book of Proof, \(\mathbb{N} = \{1, 2, 3, 4, \ldots\} \)

Set Builder Notation

\(B = \{\text{blah} : \text{blerg}\} \) means "B is the set of all things of the form blah, such that blerg"

ex: \(E = \{2x : x \in \mathbb{Z}\} = \{-6, 0, 100, \ldots\} \)

\[\{x : x \text{ is even}\} \]

Notation:

\(0 = \{x : x \text{ is odd}\} \)

\(0 = \{x | x \text{ is odd}\} \)

\(\{x : x \text{ is odd}\} : \{x | x \text{ is odd}\} \) same meaning