Recall Sum/Product/Subtraction

Q: There are 10 singles left in a coffin and you and 2 friends want to pick 3 of them. How many ways could you choose rooms?

A) 30 B) 300 C) 720 D) 1000

Answer: Using product rule \(10 \cdot 9 \cdot 8 = 720\)

New function:
\[P: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \]
\(P(n, k)\) is the number of \(k\)-permutations of \(n\) elements.

E.g. \(P(10, 3) = 720\).
Q:
What is a permutation?
- An ordering of a set of elements

What is a k-permutation?
- An ordering of a set of k elements

What is a k-permutation of n elements?
- An ordering of a set of k elements where those k are chosen from n elements

What is a formula for P(n, k)? Using product rule:
\[n \cdot (n-1)(n-2) \ldots (n-k+1) \]
or \[\prod_{i=n-k+1}^{n} i \]

How many permutations are there of n elements?
- \[n \cdot (n-1) \cdot (n-2) \cdot (n-3) \ldots \cdot 1 = n! \]
Another way to write $P(n,k)$:

$$10 \cdot 9 \cdot 8 \frac{(7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)}{(7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)} = \frac{10!}{7!}$$

Where $n! = n \cdot (n-1) \cdot (n-2) \cdots \cdot 1 = \prod_{i=1}^{n} i$

So $P(n,k) = \frac{n!}{(n-k)!}$

Q: There are 10 singles left in Coffin and you and 2 friends want to pick 3 of them. Suppose you just want to pick 3 rooms now, and you'll figure out who will stay where later. How many ways could you pick 3 rooms?

A) 30 B) 120 C) 240 D) 360
We know 720 ways if care about order.

So: \((2,3,5), (2,5,3), (3,2,5), (3,5,2), (5,2,3), (5,3,2)\)

My 1 pick 1 pick
Friend 2 pick 2 pick

But if don’t care about order, these are all the same. \(\{2,3,5\}\)

\(
\implies \text{Over counting by a factor of 6 for each set!}
\)

\[
720/6 = 120
\]
Function
\[C(n, r) = \binom{n}{r} = \text{"n choose r"} \] is the number of sets of \(r \) elements chosen from a set of \(n \) elements.

Fact: \[\binom{n}{r} = \frac{n!}{r! \cdot (n-r)!} \]

Proof: \(P(n, r) = \binom{n}{r} \cdot P(r, r) \)

\[\Rightarrow \binom{n}{r} = \frac{P(n, r)}{P(r, r)} = \frac{n!}{(n-r)! \cdot \frac{r!}{1!}} = \frac{n!}{(n-r)! \cdot r!} \]

The number of ways we can order \(r \) things chosen from among \(n \) things is equal to the number of subsets of \(r \) things, times the ways we can order each subset.
Q: If 8 people from a basketball team show up to a game, how many ways are there to form a 5 person team?

A) 40 B) 56 C) 60 D) 112

\[
\frac{8!}{5!3!} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 8 \cdot 7 = 56
\]