Functions

- Big-Ω, Big-Θ
- Turning English into math

Problem with Big-O:
- $x + 1 = O(x^2)$ is correct because big-O is upper bound.
- Need asymptotic lower bound! (Big-O is asymptotic upper bound)

"big-Omega"

def: Let $f, g : \mathbb{N} \to \mathbb{R}$ then $f(x)$ is $\Omega(g(x))$ if there exist constants $k \in \mathbb{Z}$ and $c \in \mathbb{R}$ such that when $x \geq k$, then

$$f(x) \geq c \cdot g(x)$$

ex: $5x + 6 = \Omega(x)$

Pf: Note $\forall x \in \mathbb{N}, (x>1) \Rightarrow (6>-x)$. Thus

$$5x + 6 \geq 5x - x \geq 4x$$

So with $k = 1$, $c = 4$, we have $5x + 6 = \Omega(x)$
Big-O = "asymptotic upper bound"
Big-Ω = "asymptotic lower bound"

For linear search, what is a (1) best-case asymptotic lower bound (2) worst-case asymptotic lower bound?

A) Ω(1), O(1) B) Ω(n), O(1) C) Ω(1), O(n)
D) Ω(n), O(n)).

In the best-case, the item we are searching for is at beginning of list, so we are done in constant # of steps. Worst case, need to go through the whole list, takes time O(n).

* Asymptotic ≠ worst-case
 - Worst-case asymptotic
 - Best-case asymptotic
 - Average-case asymptotic
Problem with Ω:

\[X^2 + 1 = \Omega(x) \]

"big Theta"

\[\text{def: } f(x) = \Theta(g(x)) \iff f(x) = O(g(x)) \land f(x) = \Omega(g(x)) \]

ex: \[X^2 + 1 = \Theta(x^2) \text{ but } X^2 + 1 \neq \Theta(x), X^2 + 1 \neq \Theta(x^3) \]

Big-Θ: tight asymptotic bound

Squished between upper and lower bounds
Predicates, Quantifiers, & English \rightarrow Math.

\[P(n) \equiv n \text{ is prime} \]

Predicate is a function! \(P: \mathbb{R} \rightarrow \{\text{true, false}\} \)

\[n \mapsto \mathbb{Z} \rightarrow \mathbb{N} \]

Not clear what domain is

For a natural number \(n \), \(P(n) \equiv n \text{ is prime} \)
or \(P(n) \equiv \text{the natural number } n \text{ is prime} \).

Now clear, \(P: \mathbb{N} \rightarrow \{\text{true, false}\} \)

Important

- For input to Predicate NO QUANTIFIER
- For any other variable NEED QUANTIFIER

eg. \[P(n) \equiv \forall \, n : (n \text{ is prime}) \times \]
\[P(5) \equiv \forall \, 5 : (5 \text{ is prime}) \times \]
\[P(n) \equiv \exists \, m \in \mathbb{N} : 1 < m < n \wedge m \mid n \]

\[\quad \text{Need to quantify } m \]
\[\text{no quantifier for } n. \]
\[S = \exists \text{ every variable should be quantified.} \]

\[\forall x, \quad \text{if } x > S \rightarrow x^2 = 10 \]

\[\exists x : \quad x = 2 \]

For all \(x \) such that \(x > S \), \(T(x) \)

Before: \(\forall x : x > S, T(x) \)
Better: \(\forall x, \quad x > S \rightarrow T(x) \)

\(m \mid n \leftarrow \text{true or false, not } m \mid n = 2 \)

"\(m \) divides \(n \)"

\[m \mid n \equiv \exists r \in \mathbb{Z} : m \cdot r = n \quad (\text{Domain } n, m \text{ is integers}) \]

\(\forall x_1, x_2 \in \mathbb{R}, \quad \forall x_1 = x_2 \) is always FALSE, because not all \(2 \) real \(\#\)'s equal each other

Better: \(\forall x_1, x_2 \in \mathbb{R}, \quad x_1 \neq x_2 \rightarrow \ldots \)

We don't have this \(\exists x_1, x_2 \in \mathbb{R}, \quad \forall x_1 = x_2 \) OK!
ex: For $n, m \in \mathbb{N}$

$R(n,m) \equiv$ every natural number less than m divides n.

$T(n,m) \equiv$ there is a natural number less than m that divides n.

$W(n,m) \equiv n$ and m don't have a common factor

$R(n,m) \equiv \forall p \in \mathbb{N}, p < m \rightarrow p \mid n$

$T(n,m) \equiv \exists p \in \mathbb{N} : p < m \land p \mid n$

$W(n,m) \equiv \forall p \in \mathbb{Z} : p \mid n \land p \mid m$

Rewrite: $\exists x : P(x)$ using \forall

- $\neg \forall x, P(x)$ using \exists

- $\exists x : P(x) \equiv \forall x, \neg P(x)$

- $\forall x, P(x) \equiv \exists x : \neg P(x)$