
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR 2003), volume 1, pages 195–202, Madison, WI, June 2003

High-Accuracy Stereo Depth Maps Using Structured Light

Daniel Scharstein
Middlebury College

schar@middlebury.edu

Richard Szeliski
Microsoft Research

szeliski@microsoft.com

Abstract

Recent progress in stereo algorithm performance is
quickly outpacing the ability of existing stereo data sets to
discriminate among the best-performing algorithms, moti-
vating the need for more challenging scenes with accurate
ground truth information. This paper describes a method
for acquiring high-complexity stereo image pairs with
pixel-accurate correspondence information using struc-
tured light. Unlike traditional range-sensing approaches,
our method does not require the calibration of the light
sources and yields registered disparity maps between all
pairs of cameras and illumination projectors. We present
new stereo data sets acquired with our method and demon-
strate their suitability for stereo algorithm evaluation. Our
results are available at http://www.middlebury.edu/stereo/.

1. Introduction

The last few years have seen a resurgence of interest in
the development of highly accurate stereo correspondence
algorithms. Part of this interest has been spurred by funda-
mental breakthroughs in matching strategies and optimiza-
tion algorithms, and part of the interest is due to the exis-
tence of image databases that can be used to test and com-
pare such algorithms. Unfortunately, as algorithms have
improved, the difficulty of the existing test images has not
kept pace. The best-performing algorithms can now cor-
rectly match most of the pixels in data sets for which correct
(ground truth) disparity information is available [21].

In this paper, we devise a method to automatically
acquire high-complexity stereo image pairs with pixel-
accurate correspondence information. Previous approaches
have either relied on hand-labeling a small number of im-
ages consisting mostly of fronto-parallel planes [17], or set-
ting up scenes with a small number of slanted planes that
can be segmented and then matched reliably with para-
metric correspondence algorithms [21]. Synthetic images
have also been suggested for testing stereo algorithm per-
formance [12, 9], but they typically are either too easy to

Figure 1. Experimental setup, showing the digital
camera mounted on a translation stage, the video pro-
jector, and the complex scene being acquired.

solve if noise, aliasing, etc. are not modeled, or too difficult,
e.g., due to complete lack of texture in parts of the scene.

In this paper, we use structured light to uniquely label
each pixel in a set of acquired images, so that correspon-
dence becomes (mostly) trivial, and dense pixel-accurate
correspondences can be automatically produced to act as
ground-truth data. Structured-light techniques rely on pro-
jecting one or more special light patterns onto a scene,
usually in order to directly acquire a range map of the
scene, typically using a single camera and a single projector
[1, 2, 3, 4, 5, 7, 11, 13, 18, 19, 20, 22, 23]. Random light
patterns have sometimes been used to provide artificial tex-
ture to stereo-based range sensing systems [14]. Another
approach is to register range data with stereo image pairs,
but the range data is usually of lower resolution than the
images, and the fields of view may not correspond exactly,
leading to areas of the image for which no range data is
available [16].

2. Overview of our approach

The goal of our technique is to produce pairs of real-
world images of complex scenes where each pixel is labeled
with its correspondence in the other image. These image
pairs can then be used to test the accuracy of stereo algo-
rithms relative to the known ground-truth correspondences.

I-195



Our approach relies on using a pair of cameras and one
or more light projectors that cast structured light patterns
onto the scene. Each camera uses the structured light se-
quence to determine a unique code (label) for each pixel.
Finding inter-image correspondence then trivially consists
of finding the pixel in the corresponding image that has the
same unique code.

The advantage of our approach, as compared to using a
separate range sensor, is that the data sets are automatically
registered. Furthermore, as long as each pixel is illuminated
by at least one of the projectors, its correspondence in the
other image (or lack of correspondence, which indicates oc-
clusion) can be unambiguously determined.

In our current experimental setup (Figure 1), we use
a single digital camera (Canon G1) translating on a lin-
ear stage, and one or two light projectors illuminating the
scene from different directions. We acquire images un-
der both structured lighting and ambient illumination condi-
tions. The ambient illuminated images can be used as inputs
to the stereo matching algorithms being evaluated.

Let us now define some terminology. We distinguish be-
tween views – the images taken by the cameras – and illu-
minations – the structured light patterns projected onto the
scene. We model both processes using planar perspective
projection and use coordinates (x, y) for views and (u, v)
for illuminations.

There are two primary camera views, L (left) and R
(right), between which correspondences are to be estab-
lished. The illumination sources from which light patterns
are projected are identified using numbers {0, 1, . . .}. More
than one illumination direction may be necessary to illumi-
nate all surfaces in complex scenes with occluding objects.

Our processing pipeline consists of the following stages:

1. Acquire all desired views under all illuminations.

2. Rectify the images to obtain the usual horizontal
epipolar geometry, using either a small number of cor-
responding features [15] or dense 2D correspondences
(step 4).

3. Decode the light patterns to get (u, v) codes at each
pixel in each view.

4. Use the unique codes at each pixel to compute corre-
spondences. (If the images are rectified, 1D search can
be performed, else 2D search is required.) The results
of this correspondence process are the (usual) view dis-
parities (horizontal motion).

5. Determine the projection matrices for the illumination
sources from the view disparities and the code labels.

6. Reproject the code labels into the two-view geometry.
This results in the illumination disparities.

7. Combine the disparities from all different sources to
get a reliable and accurate final disparity map.

8. Optionally crop and downsample the disparity maps
and the views taken under ambient lighting.

The remainder of this paper is structured as follows.
The next section describes the algorithms used to determine
unique codes from the structured lighting. Section 4 dis-
cusses how view disparities and illumination disparities are
established and merged. Section 5 describes our experimen-
tal results, and Section 6 describes our conclusions and fu-
ture work.

3. Structured light

To uniquely label each pixel, we project a series of struc-
tured light images onto the scene, and decode the set of pro-
jected intensities at each pixel to give it a unique label. The
simplest kind of pattern to project is a series of single stripe
images (light planes) [3, 7, 19], but these require O(n) im-
ages, where n is the width of the image in pixels.

Instead, we have tested two other kinds of structured
light: binary Gray-code patterns, and series of sine waves.

3.1. Gray codes

Gray-code patterns only contain black and white (on/off)
pixel values, which were the only possibilities available
with the earliest LCD projectors. Using such binary im-
ages requires log2(n) patterns to distinguish among n lo-
cations. For our projector (Sony VPL-CX10) with 1024×
768 pixels, it is sufficient to illuminate the scene with 10
vertical and 10 horizontal patterns, which together uniquely
encode the (u, v) position at each pixel. Gray codes are
well suited for such binary position encoding, since only
one bit changes at a time, and thus small mislocalizations
of 0-1 changes cannot result in large code changes [20].

Decoding the light patterns is conceptually simple, since
at each pixel we need only decide whether it is illuminated
or not. We could for example take two reference images,
all-white and all-black, and compare each code pixel with
the average of the two. (With a gray-level projector, we
could also project a reference image with 0.5 intensity).
Such reference images measure the albedo of each scene
point. In practice, however, this does not work well due to
interreflections in the scene and “fogging” inside the pro-
jector (adding a low-frequency average of intensities to the
projected pattern), which causes increased brightness near
bright areas. We have found that the only reliable way of
thresholding pixels into on/off is to project both the code
pattern and its inverse. We can then label each pixel accord-
ing to whether the pattern or its inverse appears brighter.
This avoids having to estimate the local albedo altogether.
The obvious drawback is that twice as many images are re-
quired. Figure 2 shows examples of thresholded Gray-code
images.

I-196



Figure 2. Examples of thresholded Gray-code im-
ages. Uncertain bits are shown in gray. (Full-size
versions of all images in this paper are available at
http://www.middlebury.edu/stereo/.)

Unfortunately, even using patterns and their inverses
may not be enough to reliably distinguish light patterns on
surfaces with widely varying albedos. In our experiments,
we have found it necessary to use two different exposure
times (0.5 and 0.1 sec.). At each pixel, we select the ex-
posure setting that yields the largest absolute difference be-
tween the two illuminations. If this largest difference is still
below a threshold (sum of signed differences over all color
bands < 32), the pixel is labeled “unknown” (gray pixels in
Figure 2), since its code cannot be reliably determined. This
can happen in shadowed areas or for surfaces with very low
albedo, high reflectance, or at oblique angles.

The initial code values we obtain by concatenating the
bits from all the thresholded binary images need to be
cleaned up and potentially interpolated, since the camera
resolution is typically higher than projector resolution. In
our case, the projector has a 1024 × 768 resolution, and
the camera has 2048 × 1536. Since the camera only sees a
subset of the illuminated scene (i.e., it is zoomed in) and il-
lumination pixels can appear larger on slanted surfaces, we
get even more discrepancy in resolution. In our setup, each
illumination pixel is typically 2–4 camera pixels wide. We
clean up the Gray code images by filling small holes caused
by unknown bit values. We then interpolate (integer) code
values to get a higher resolution and avoid multiple pixels
with the same code. Interpolation is done in the prominent
code direction, i.e., horizontally for u and vertically for v.
We currently compute a robust average over a sliding 1D
window of 7 values. The results of the entire decoding pro-
cess are shown in Figure 4a.

3.2. Sine waves

Binary Gray-code patterns use only two different inten-
sity levels and require a whole series of images to uniquely
determine the pixel code. Projecting a continuous function
onto the scene takes advantage of the gray-level resolution
available in modern LCD projectors, and can thus poten-
tially require fewer images (or alternatively, result in greater

precision for the same number of images). It can also po-
tentially overcome discretization problems that might intro-
duce artifacts at the boundaries of binary patterns [6].

Consider for example projecting a pure white pattern and
a gray-level ramp onto the scene. In the absence of noise
and non-linearities, the ratio of the two values would give us
the position along the ramp of each pixel. However, this ap-
proach has limited effective spatial resolution [11, 22]. Pro-
jecting a more quickly varying pattern such as a sawtooth al-
leviates this, but introduces a phase ambiguity (points at the
same phase in the periodic pattern cannot be distinguished),
which can be resolved using a series of periodic patterns at
different frequencies [13]. A sine wave pattern avoids the
discontinuities of a sawtooth, but introduces a further two-
way ambiguity in phase, so it is useful to project two or
more waves at different phases

Our current algorithm projects sine waves at two differ-
ent frequencies and 12 different phases. The first frequency
has a period equal to the whole (projector) image width or
height; the second has 10 periods per screen.

Given the images of the scene illuminated with these
patterns, how do we compute the phase and hence (u, v)
coordinates at each pixel? Assuming a linear image forma-
tion process, we have the following (color) image formation
equation

�Ikl(x, y) = �A(x, y)Bkl[sin(2πfku+ φl) + 1], (1)

where �A(x, y) is the (color) albedo corresponding to scene
pixel (x, y), Bkl is the intensity of the (k, l)th projected pat-
tern, fk is its frequency, and φl is its phase. A similar equa-
tion can be obtained for horizontal sine wave patterns by
replacing u with v.

Assume for now that we only have a single frequency
fk and let cl = cosφl, sl = sinφl, cu = cos(2πfku),
su = sin(2πfku), and �C = �A(x, y)B. The above equation
can then be re-written (for a given pixel (x, y)) as

�Ikl = �C[sucl + cusl + 1]. (2)

We can estimate the illuminated albedo value �C at each
pixel by projecting a mid-tone grey image onto the scene.
The above equation is therefore linear in the unknowns
(cu, su), which can be (optimally) recovered using linear
least squares [10], given a set of images with different
(known) phases φl. (In the least squares fitting, we ignore
any color values that are saturated, i.e., greater than 240.)
An estimate of the u signal can then be recovered using

u = p−1
u (

1
2π

tan−1 su

cu
+m), (3)

where pu =W/fu is the sine period (in pixels) and m is the
(unknown) integral phase wrap count. To solve the phase
wrapping problem, we first estimate the value of u using

I-197



constraint line

2 π f u

(cu,su)

Figure 3. Phase estimation from (cu, su) least
squares fit. The red dot is the least squares solution
to the constraint lines, and the ellipse around it indi-
cates the two-dimensional uncertainty.

a single wave (f1 = 1), and then repeat the estimation with
f2 =10, using the previous result to disambiguate the phase.

Since we are using least squares, we can compute a cer-
tainty for the u estimate. The normal equations for the least
squares system directly give us the information matrix (in-
verse covariance) for the (cu, su) estimate. We can convert
this to a variance in u by projecting along the direction nor-
mal to the line going through the origin and (cu, su) (Fig-
ure 3). Furthermore, we can use the distance of the fitted
point (cu, su) from the unit circle as a sanity check on the
quality of our sine wave fit. Computing certainties allows
us to merge estimates from different exposures. At present,
we simply pick the estimate with the higher certainty.

Figure 4b shows the results of recovering the u positions
using sine patterns. For these experiments, we use all 12
phases (φ = 0◦, 30◦, . . . , 330◦) and two different exposures
(0.1 and 0.5 sec). In the future, we plan to study how the
certainty and reliability of these estimates varies as a func-
tion of the number of phases used.

3.3. Comparison

Figure 4 shows examples of u coordinates recovered
both from Gray code and sine wave patterns. The total num-
ber of light patterns used is 80 for the Gray codes (10 bit
patterns and their inverses, both u and v, two exposures),
and 100 for the sine waves (2 frequencies and 12 phases
plus 1 reference image, both u and v, two exposures). Vi-
sual inspection shows that the Gray codes yield better (less
noisy) results. The main reason is that by projecting binary
patterns and their inverses, we avoid the difficult task of es-
timating the albedo of the scene. Although recovering the
phase of sine wave patterns potentially yields higher reso-
lution and could be done with fewer images, it is also more
susceptible to non-linearities of the camera and projector
and to interreflections in the scene.

In practice, the time to take the images of all structured
light patterns is relatively small compared to that of setting
up the scene and calibrating the cameras. We thus use the
Gray code method for the results reported here.

(a): Gray code (b): sine wave

Figure 4. Computed u coordinates (only low-order
bits are shown).

4. Disparity computation

Given N illumination sources, the decoding stage de-
scribed above yields a set of labels (uij(x, y), vij(x, y)), for
each illumination i ∈ {0, . . . , N−1} and view j ∈ {L,R}.
Note that these labels not only uniquely identify each scene
point, but also encode the coordinates of the illumination
source. We now describe how high-accuracy disparities can
be computed from such labels corresponding to one or more
illumination directions.

4.1. View disparities

The first step is to establish correspondences between the
two views L and R by finding matching code values. As-
suming rectified views for the moment, this amounts to a
simple 1D search on corresponding scanlines. While con-
ceptually simple, several practical issues arise:

• Some pixels may be partially occluded (visible only in
one view).

• Some pixels may have unknown code values in some
illuminations due to shadows or reflections.

• A perfect matching code value may not exist due to
aliasing or interpolation errors.

• Several perfect matching code values may exist due to
the limited resolution of the illumination source.

• The correspondences computed from different illumi-
nations may be inconsistent.

The first problem, partial occlusion, is unavoidable and will
result in unmatched pixels. The number of unknown code
values due to shadows in the scene can be reduced by us-
ing more than one illumination source, which allows us to
establish correspondences at all points illuminated by at
least one source, and also enables a consistency check at
pixels illuminated by more than one source. This is ad-
vantageous since at this stage our goal is to establish only
high-confidence correspondences. We thus omit all pixels

I-198



whose disparity estimates under different illuminations dis-
agree. As a final consistency check, we establish dispari-
ties dLR and dRL independently and cross-check for con-
sistency. We now have high-confidence view disparities at
points visible in both cameras and illuminated by at least
one source (see Figures 6b and 7b).

Before moving on, let us consider the case of unrectified
views. The above method can still be used, except that a
2D search must be used to find corresponding codes. The
resulting set of high-quality 2D correspondences can then
be used to rectify the original images [15].

4.2. Illumination disparities

The next step in our system is to compute another set
of disparities: those between the cameras and the illumina-
tion sources. Since the code values correspond to the im-
age coordinates of the illumination patterns, each camera-
illumination pair can be considered an independent source
of stereo disparities (where the role of one camera is played
by the illumination source). This is of course the idea be-
hind traditional structured lighting systems [3].

The difference in our case is that we can register these
illumination disparities with our rectified view disparities
dLR without the need to explicitly calibrate the illumina-
tion sources (video projectors). Since our final goal is to
express all disparities in the rectified two-view geometry,
we can treat the view disparities as a 3D reconstruction of
the scene (i.e., projective depth), and then solve for the pro-
jection matrix of each illumination source.

Let us focus on the relationship between the left view L
and illumination source 0. Each pixel whose view disparity
has been established can be considered a (homogeneous)
3D scene point S = [x y d 1]T with projective depth
d = dLR(x, y). Since the pixel’s code values (u0L, v0L)
also represent its x and y coordinates in the illumination
pattern, we can write these coordinates as homogenous 2D
point P = [u0L v0L 1]T . We then have

P ∼= M0L S,

where M0L is the unknown 4 × 3 projection matrix of illu-
mination source 0 with respect to the left camera. If we let
m1, m2, m3 denote the three rows of M0L, this yields

u0L m3 S = m1 S, and

v0L m3 S = m2 S. (4)

Since M is only defined up to a scale factor, we setm34 = 1.
Thus we have two linear equations involving the 11 un-
known entries of M for each pixel whose disparity and il-
lumination code are known, giving us a heavily overdeter-
mined linear system of equations, which we solve using
least squares [10].

If the underlying disparities and illumination codes are
correct, this is a fast and stable method for computing M0L.
In practice, however, a small number of pixels with large
disparity errors can strongly affect the least-squares fit. We
therefore use a robust fit with outlier detection by iterating
the above process. After each iteration, only those pixels
with low residual errors are selected as input to the next
iteration. We found that after 4 iterations with successively
lower error thresholds we can usually obtain a very good fit.

Given the projection matrix M0L, we can now solve
Equation (4) for d at each pixel, using again a least-squares
fit to combine the two estimates. This gives us the illumi-
nation disparities d0L(x, y) (see Figures 6c and 7c). Note
that these disparities are available for all points illuminated
by source 0, even those that are not visible from the right
camera. We thus have a new set of disparities, registered
with the first set, which includes half-occluded points. The
above process can be repeated for the other camera to yield
disparities d0R, as well as for all other illumination sources
i = 1 . . . N−1.

4.3. Combining the disparity estimates

Our remaining task is to combine the 2N + 2 disparity
maps. Note that all disparities are already registered, i.e.,
they describe the horizontal motion between views L and
R. The first step is to create combined maps for each of L
and R separately using a robust average at pixels with more
than one disparity estimate. Whenever there is a majority of
values within close range, we use the average of this subset
of values; otherwise, the pixel is labeled unknown. In the
second step, the left and right (combined) maps are checked
for consistency. For unoccluded pixels, this means that

dLR(x, y) = −dRL(x+ dLR(x, y), y),

and vice versa. If the disparities differ slightly, they are ad-
justed so that the final set of disparity maps is fully con-
sistent. Note that since we also have disparities in half-
occluded regions, the above equation must be relaxed to
reflect all legal visibility situations. This yields the final,
consistent, and highly accurate pair of disparity maps relat-
ing the two views L and R (Figures 6d and 7d).

The two final steps are cropping and downsampling. Up
to this point, we are still dealing with full-size (2048×1536)
images. In our setup, disparities typically range from about
210 to about 450. We can bring the disparities closer to zero
by cropping to the joint field of view, which in effect stabi-
lizes an imaginary point just behind farthest surface in the
scene. This yields a disparity range of 0–240, and an image
width of 1840. Since most current stereo implementations
work with much smaller image sizes and disparity ranges,
we downsample the images and disparity maps to quarter
size (460 × 384). The disparity maps are downsampled us-
ing a majority filter, while the ambient images are reduced

I-199



Figure 5. The two image pairs: Cones (left) and Teddy (right).

with a sharp 8-tap filter. Note that for the downsampled im-
ages, we now have disparities with quarter-pixel accuracy.

A remaining issue is that of holes, i.e., unknown dispar-
ity values, which are marked with a special value. While
small holes can be filled by interpolation during the above
process, large holes may remain in areas where no illumina-
tion codes were available to begin with. There are two main
sources for this: (1) surfaces that are highly specular or have
very low albedo; and (2) areas that are shadowed under all
illuminations. Special care must be taken to avoid both sit-
uations when constructing test scenes whose disparities are
to be estimated with the method described here.

5. Results

Using the method described in the previous sections, we
have acquired two different scenes, Cones and Teddy. Fig-
ure 5 shows views L and R of each scene taken under ambi-
ent lighting. L andR are actually views 3 and 7 out of a total
of 9 images we have taken from equally-spaced viewpoints,
which can be used for prediction-error evaluation [21].

The Cones scene was constructed such that most scene
points visible from either view L and R can be illuminated
with a single light source from above (see Figure 6a). The
exception is the wooden lattice in the upper right quadrant
in the image. (Its shadow falls on a planar surface, however,
so that the missing disparities could be filled in by interpo-
lation.) For the Teddy we used two illumination directions
(see Figure 7a). Due to the complex scene, however, several
small areas are shadowed under both illuminations.

Figures 6 and 7 also show the recovered view disparities
(b) and illumination disparities (c), as well as the final dis-
parity maps combined from all sources (d). The combina-
tion step not only fills in half-occluded and half-shadowed
regions, but also serves to detect outlier disparities (e.g., due
to errors in the projection matrix estimation).

In order to verify that our stereo data sets are useful for
evaluating stereo matching algorithms, we ran several of
the algorithms from the Middlebury Stereo Page [21] on
our new images. Figure 8 shows the results of three al-
gorithms (SSD with a 21 × 21 shiftable window, dynamic
programming, and graph cuts) on the cropped and down-
sampled image pairs, as well as the corresponding ground-

truth data. Table 1 shows the quantitative performance in
non-occluded areas (percentage of “bad” pixels with large
disparity errors) for two error thresholds t = 1 and t = 2.
(We ignore points whose true disparities are unknown.)

The results clearly indicate that our data sets are chal-
lenging, yet not unrealistically so. Difficulties posed to
the matching algorithms include a large disparity range,
complex surface shapes, textureless areas, narrow occlud-
ing objects and ordering-constraint violations. Of the algo-
rithms tested, the graph-cut method performs best, although
it clearly cannot handle some of the complex occlusion sit-
uations and some highly-slanted surfaces.

6. Conclusion

In this paper we have developed a new methodology
to acquire highly precise and reliable ground truth dis-
parity measurements accurately aligned with stereo im-
age pairs. Such high-quality data is essential to evalu-
ate the performance of stereo correspondence algorithms,
which in turn spurs the development of even more accu-
rate algorithms. Our new high-quality disparity maps and
the original input images are available on our web site at
http://www.middlebury.edu/stereo/. We plan to add these
new data sets to those already in use to benchmark the per-
formance of stereo correspondence algorithms [21].

Our novel approach is based on taking stereo image
pairs illuminated with active lighting from one or more
projectors. The structured lighting enables us to uniquely
code each scene pixel, which makes inter-camera corre-
spondence much easier and more reliable. Furthermore, the
encoded positions enable the recovery of camera-projector
disparities, which can be used as an auxiliary source of in-
formation to increase the reliability of correspondences and
to fill in missing data.

We have investigated two different kinds of structured
light: binary Gray codes, and continuous sine waves. At
present, the Gray codes give us more reliable estimates of
projector coordinates, due mainly to their higher insensitiv-
ity to effects such as photometric nonlinearities and inter-
reflections. In future work, we plan to develop the sine-
wave approach further, to see if we can reduce the to-
tal number of acquired images necessary to recover high-

I-200



(a) (b) (c) (d)

Figure 6. Left view of Cones (one illumination source is used): (a) scene under illumination (note absence of shadows
except in upper-right corner); (b) view disparities; (c) illumination disparities; (d) final (combined) disparity map.
Unknown disparities are shown in black.

(a) (b) (c) (d)

Figure 7. Left view of Teddy (two illumination sources are used): (a) scene under the two illuminations; (b) view
disparities; (c) illumination disparities; (d) final (combined) disparity map. Unknown disparities are shown in black.

SSD Dynamic progr. Graph cut Ground truth

Figure 8. Stereo results on cropped and downsampled images: Cones (top) and Teddy (bottom).

I-201



Bad % Cones Teddy
t = 1 t = 2 t = 1 t = 2

SSD 17.8% 9.3% 26.5% 12.8%
DP 17.1% 9.8% 30.1% 10.5%
GC 12.6% 7.0% 29.3% 11.4%

Table 1. Performance of SSD, dynamic programming,
and graph cut stereo methods on our data sets. The
table shows the percentage of pixels whose disparity
error is greater than threshold t for t=1, 2.

quality pixel encodings. We also plan to fill in the remaining
pixels currently marked as unknown in our disparity maps,
using a combination of semi-automated and manual meth-
ods. It may also be possible to co-locate the cameras and
projectors using mirrors and to use Zickler et al.’s beautiful
results on reciprocity to deal with highlights [25].

While doing our research, we became aware of concur-
rent work aimed at acquiring high-quality correspondences
with active illumination that is applicable to both static and
dynamic scenes [8, 24]. Instead of decoding the projected
light patterns to yield pixel addresses in the projector, these
alternative methods simply temporally sum up the corre-
lation or error measures of all frames to directly compute
stereo disparities. This results in a simpler approach that
produces high-quality inter-camera correspondences. Un-
like our method, however, these techniques are not able to
fill in semi-occluded areas using projected disparities.

We close the paper with the following challenge. Can
one devise a comparable (or any) technique to acquire high-
quality ground truth data for real-time two-dimensional mo-
tion? The existence of such data would be of invaluable
use to the motion estimation community, just as we hope
the data presented here will aid in developing better stereo
matching algorithms.

Acknowledgments

Thanks to Alexander Vandenberg-Rodes who was instru-
mental in creating the scenes and capturing the images.

References

[1] G. J. Agin and T. O. Binford. Computer description of curved
objects. IEEE Trans. Comp., C-25(4):439–449, 1976.

[2] J. Batlle, E. Mouaddib, and J. Salvi. Recent progress in
coded structured light as a technique to solve the correspon-
dence problem: a survey. Pat. Recog., 31(7):963–982, 1998.

[3] P. Besl. Active optical range imaging sensors. In Jorge L.C.
Sanz, editor, Advances in Machine Vision, pp. 1–63, 1989.

[4] J.-Y. Bouguet and P. Perona. 3D photography on your desk.
In ICCV’98, pp. 43–50, 1998.

[5] C. Chen, Y. Hung, C. Chiang, and J. Wu. Range data acquisi-
tion using color structured lighting and stereo vision. Image
and Vision Computing, 15(6):445–456, 1997.

[6] Y.-Y. Chuang et al. Environment matting extensions: to-
wards higher accuracy and real-time capture. In SIGGRAPH
2000, pp. 121–130, 2000.

[7] B. Curless and M. Levoy. Better optical triangulation
through spacetime analysis. In ICCV’95, pp. 987–994, 1995.

[8] J. Davis, R. Ramamoorthi, and S. Rusinkiewicz. Spacetime
stereo: a unifying framework for depth from triangulation.
In CVPR 2003, 2003.

[9] T. Frohlinghaus and J. M. Buhmann. Regularizing phase-
based stereo. In ICPR’96, vol. A, pp. 451–455, 1996.

[10] G. Golub and C. F. Van Loan. Matrix Computation, third
edition. The John Hopkins University Press, 1996.

[11] G. Häusler and D. Ritter. Parallel three-dimensional sensing
by color-coded triangulation. Applied Optics, 32(35):7164–
7169, 1993.

[12] W. Hoff and N. Ahuja. Surfaces from stereo: integrating fea-
ture matching, disparity estimation, and contour detection.
IEEE Trans. Pat. Anal. Mach. Int., 11(2):121–136, 1989.

[13] E. Horn and N. Kiryati. Toward optimal structured light pat-
terns. In Intl. Conf. Recent Advances in 3D Digital Imaging
and Modeling, pp. 28–35, 1997.

[14] S. B. Kang, J. Webb, L. Zitnick, and T. Kanade. A multi-
baseline stereo system with active illumination and real-time
image acquisition. In ICCV’95, pp. 88–93, 1995.

[15] C. Loop and Z. Zhang. Computing rectifying homographies
for stereo vision. In CVPR’99, volume I, pp. 125–131, 1999.

[16] J. Mulligan, V. Isler, and K. Daniilidis. Performance evalu-
ation of stereo for tele-presence. In ICCV 2001, vol. II, pp.
558–565, 2001.

[17] Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta. Occlusion
detectable stereo - occlusion patterns in camera matrix. In
CVPR’96, pp. 371–378, 1996.

[18] M. Proesmans, L. Van Gool, and F. Defoort. Reading be-
tween the lines - a method for extracting dynamic 3D with
texture. In ICCV’98, pp. 1081–1086, 1998.

[19] K. Pulli et al. Acquisition and visualization of colored 3D
objects. In ICPR’98, pp. 11-15, 1998.

[20] K. Sato and S. Inokuchi. Three-dimensional surface mea-
surement by space encoding range imaging. J. Robotic Sys-
tems, 2:27–39, 1985.

[21] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. Intl. J.
Comp. Vis., 47(1):7–42, 2002.

[22] E. Schubert. Fast 3D object recognition using multiple color
coded illumination. In Proc. IEEE Conf. Acoustics, Speech,
and Signal Processing, pp. 3057–3060, 1997.

[23] P. Vuylsteke and A. Oosterlinck. Range image acquisition
with a single binary-encoded light pattern. IEEE Trans. Pat.
Anal. Mach. Int., 12(2):148–164, 1990.

[24] L. Zhang, B. Curless, and S. M. Seitz. Spacetime stereo:
shape recovery for dynamic scenes. In CVPR 2003, 2003.

[25] T. Zickler, P. N. Belhumeur, and D. J. Kriegman. Helmholtz
stereopsis: exploiting reciprocity for surface reconstruction.
In ECCV 2002, v. III, pp. 869–884, 2002.

I-202


