In 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’96), pp. 114-121

Chapter 14
Optimal Placement of Convex Polygons to Maximize Point Containment

Matthew Dickerson®

Abstract

Given a convex polygon P with m vertices and a set S of
n points in the plane, we consider the problem of finding
a placement of P that contains the maximum number of
points in S. We allow both translation and rotation.
Our algorithm is self-contained and utilizes the geometric
properties of the containing regions in the parameter space of
transformations. The algorithm requires O(nk*m? log(mk))
time and O(n + m) space, where k is the maximum number
of points contained. This provides a linear improvement over
the best previously known algorithm when k is large (©(n))
and a cubic improvement when k is small. We also show
that the algorithm can be extended to solve bichromatic and

general weighted variants of the problem.

1 Introduction

A planar rigid motion p is an affine transformation of
the plane that preserves distance (and therefore angles
and area also). We say that a polygon P contains a set
S of points if every point in S lies on P or in the interior
of P. In this paper, we examine the following problem:

ProBLEM 1. (OPTIMAL POLYGON PLACEMENT)
Given a conver polygon P and a planar pownt set S,
find a rigid motion p that mazimizes the number of
points contained by p(P). Report p and the subset of S
contained by p(P).

1.1 Background

Finding a transformation of a region such that it
contains a given point set or subset is a problem that
has received considerable attention [2, 4, 5, 6, 7, 8§,
10, 11]. An interesting variant of the problem is to
find an optimal placement of a given polygon that
mazximizes the number of points contained. Several
authors have proposed algorithms for different versions
of this problem, constraining either the shape of the

polygon or the kind of allowed transformation.

*Department of Math and Computer Science, Middlebury Col-
lege, Middlebury, VT 05753; dickerso@middlebury.edu.
ported by NSF grant CCR-9301714.

tDepartment of Computer Science, Cornell University, Ithaca,
NY 14853; schar@cs.cornell.edu. Supported by NSF grant IRI-
9057928.

Sup-

Daniel Scharstein?

Eppstein and Erickson [6], as a substep of their
algorithm to find the minimum L., diameter k-subset
of a given set S, note that an algorithm of Overmars
and Yap [9] can be modified to find the maximum
depth of an arrangement of axis-aligned rectangles.
This approach solves in O(nlogn) time the problem of
finding an optimal translation of a rectangle to cover
the maximum sized subset of S. That is, it solves
Problem 1 in O(nlogn) time in the special case when
the polygon is a rectangle and placement is restricted to
translation only. Efrat, Sharir, and Ziv [5] as a substep
in their algorithm for finding the smallest k-enclosing
homothetic copy of an m-vertex polygon, claim an
oracle solving the translation version for general m-
vertex convex polygons. They suggest a line-sweep
technique for their oracle, yielding an algorithm running
in O(nklognlogm) time. Barequet, Dickerson, and
Pau recently showed that the optimizing translation of
a convex polygon can be found in O(nklog(mk)) time
and O(m + n) space [1] using anchored sweeps around
points in 5.

For Problem 1, the more general problem allowing
rigid motion of a convex polygon, less is known. A
brute force approach would be: for each triple of points
in S, compute all stable placements of P, and for
each placement count the number of points contained
(see Section 2.1 for a definition of stable placements).
Chazelle [3] has shown that all stable placements of an
m-vertex polygon P on three points can be computed
in O(m?) time. This leads to an O(n*m?logm) time
algorithm for Problem 1. FEppstein has pointed out
in personal communication that the problem can be
solved in O(n?k3m? logk) time using techniques of [6].
He noted that the set covered by the optimal polygon
placement is a subset of the O(k) nearest points in
vertical distance to a segment pq, where p and ¢ are
the maximum and minimum points (with respect to -
coordinate) of the optimal set. This reduces the problem
to searching O(n?) subsets of O(k) points each. Though
k may be as large as n, making this an Q(n®) algorithm
in the worst case, it does show that the dependence on
n can be reduced to quadratic. In the case where k is
small, this method provides the best previously known
algorithm.



Optimal Placement of Convex Polygons

1.2 OQutline of our Approach

In this paper we provide a new algorithm for
Problem 1 requiring only O(nk?m?log(km)) time and
O(m + n) space. The basic idea of the algorithm is as
follows:

For each point ¢; € S, we identify all transforma-
tions p of the polygon P that keep ¢; on its bound-
ary. We capture these transformations geometrically in
the rotation diagram, a compact geometric characteriza-
tion of a two-dimensional subset of the parameter space.
Each other point ¢; yields a containing region in the
rotation diagram which can be decomposed into O(m?)
subregions of constant complexity, and can be computed
efficiently by considering the intersections of two rotat-
ing copies of P. We search the arrangement of all con-
taining regions using a line sweep to find the translation-
stable placement yielding maximum point containment.

We reduce our search space by using a bucketing
approach to eliminate points that are too far from g¢;
to be contained by a placement of P with ¢; on the
boundary. This yields an output-sensitive time bound
for our algorithm, i.e.; a time bound dependent on the
number k of points contained by the optimal placement.

The rest of the paper is organized as follows: In Sec-
tion 2 we present some definitions and geometric lem-
mas upon which our algorithm is based. In Section 3 we
present our algorithm along with an analysis and proof
of correctness. In Section 4, we generalize our algorithm
to solve the bichromatic variant of our problem, as well
as a general weighted variant. Section 5 provides our
summary remarks and some open questions including
comments on possible extensions to some related prob-
lems.

2 Geometric and Algorithmic Preliminaries

We now present some geometric results necessary for our
algorithm. We begin with some definitions and notation
that will be used throughout the paper.

We use ¢; to represent the " point in our input set
S. We assume that the polygon P is represented as a list
of its vertices vy,..., vy, given in clockwise order with
vy located at the origin. We use the standard notation
0P to represent the boundary of the polygon P; that
is, the union of the edges and vertices of P. Likewise,
Ip(P) is the boundary of the polygon p(P).
2.1 Stable Placements
Stable placements play a fundamental role in our
algorithm, allowing us to consider only a finite subset
of the infinite number of all possible placements. Bare-
quet, et al. [1] gave the following definition of translation
stable placement of a polygon with respect to a point
set.

115

DEFINITION 2.1. Let 7(P) be a translation of poly-
gon P containing a set of points S. We say that 7(P)
1s in translation stable placement if at least 2 points in
S are on OP.

Chazelle [3] gave a definition of stable placement
of two polygons P and @ with P containing ) under
general rigid motion (translation and rotation). He
showed that if a polygon P contains a polygon (), then
there exists a stable placement of P and ¢ with P still
containing .

In our algorithm, we use a simplified version of this
result:

LEMMA 2.1. Let S be a planar point set and P a
convez polygon. If there is a rigid motion p such that
p(P) contains k > 2 points in S, then there exists a rigid
motion p* such that p*(P) contains at least k points in
S with at least one point in S on the boundary 0p™ (P).

We also use the following lemma (which was stated
and proven in a slightly different form in [1]) relating
intersections of polygons and translation stable place-
ments.

LEMMA 2.2. (BAREQUET, DICKERSON, PAU) Let
P be a convexr polygon, q1,qs points, and 7 and T
the translations mapping the origin to points q; and
qa respectively.  For any point x on Om(P), define
Te = ¢2 — x as the translation that maps © to q5. Then
z is a point of intersection between Ot (P) and 972 (P)
if and only if q1 is on 91, (T (P)). (Note that qo must
be on 07, (11 (P)) by the definition of 7,.)

What the previous lemma tells us is that the points
of intersection between two translated copies of a convex
polygon P determine all translations of P that are
in translation stable placement with respect to these
points. Specifically, (7 (P)) is in translation stable
placement with ¢; and ¢ on 91, (1 (P)) if « is a point
of intersection between g (P) and 01 (P). See Figure 1
for illustration. The proof of this lemma follows from
elementary geometry and vector arithmetic. In fact,
the lemma easily generalizes to the following lemma on
containment of two points ¢; and ¢s:

LEMMA 2.3. Let P be a convexr polygon, q1,qs
points, and T and 15 the translations mapping the ori-
gin to points qy and qs respectively. For any point x,
define T, = q2 — x as the translation that maps x to
q2. Then x € (r(P) N m(P)) if and only if 7u(m1(P))
contains both q1 and q-.

To solve the problem of maximal point containment
for translation only, the algorithm of [1] uses the infor-
mation provided by these lemmas to perform an an-
chored sweep of the polygon P around each point in
S. That is, for a given ¢; € S, and for every other
point ¢; € S, it determines which translations keep ¢;



116

Figure 1: Nllustration of Lemma 2.2: 7, = go—« yields a
translation stable placement 7, (71 (P)) with respect to

q1 and ¢o iff = € (Om(P) NI (P)).

on the boundary and contain ¢;. These translations
can be considered as an arrangement of regions along
the boundary of P, where the boundary of P has been
parameterized from 0 to the circumference of P. The
algorithm then performs a sweep on this 1-D arrange-
ment to find the deepest level. The discrete events in
this sweep are the points where both ¢; and some point
q; are on the boundary, which are determined by the
intersections of two copies of P translated by ¢; and ¢;.

Unfortunately, this method for computing the an-
chored sweep cannot be used for the more general prob-
lem allowing translation and rotation, as there are an
infinite number of possible rotations. To solve the more
general problem, we must substantially modify the ap-
proach of [1]. Nonetheless, though Problem 1 allows
general rigid motion—translation and rotation—we will
make use of Lemmas 2.2 and 2.3 as follows: for a dis-
crete set of rotations of a polygon around a point ¢; € 5,
we compute the translations of that polygon (with angle
of rotation fixed) that contain other points in S.

2.2 General Strategy for Rigid Motion

We now describe our general strategy and give some
necessary lemmas, beginning with a description of the
basic new conceptual object used in our solution: the
rotation diagram.

2.2.1 Rotation Diagrams

For each point ¢; € S, we want to find the rgid
motion p such that ¢; is on dp(P), and p(P) contains a
maximal number of points. This involves rotating the
polygon P around ¢;, keeping vertex v; on ¢;, and for
each angle of rotation computing the arrangement of
translations that keep ¢; on the boundary. We map out
this two-dimensional parameter space of all rotations
and all translations that keep ¢; on the boundary of
P using a rotation diagram. The angles of rotation,
ranging from 0 to 2w, form the horizontal axis of the

Dickerson and Scharstein

diagram. We can also parameterize all translations by
identifying them with the points on the boundary of
P. This yields the vertical axis, ranging from 0 to
Cp, the circumference of P. We call the resulting two-
dimensional space the rotation diagram Rp 4, Note that
both axes of Rp,, “wrap around”, since 0 and 2w, and
also 0 and Cp are identified. (In terms of topology, the
rotation diagram forms the surface of a torus.) Each
point (6,t) in Rpg, corresponds to the placement of
P rotated by ¢ and translated such that the point at
position ¢ along P’s circumference is identified with ¢;.

Given other points in S, we can then map out their
containing regions in the rotation diagram, allowing
us to geometrically capture the optimal placement of
P. We illustrate this idea in the following section for
only one extra point, and give a number of the lemmas
necessary for both our proof of correctness and run-time
analysis.

2.2.2 Pairs of Rotation Polygons

Consider placing two copies P; and P» of a polygon
P on points ¢q1,92 € S. Specifically, we place vertex
v1 of P on each of the two points. We now rotate the
two polygons in tandem and examine what happens.
By Lemma 2.2, at any given angle of rotation the
intersections between the two polygons determine the
translations of P which would place both ¢; and g¢-
on the boundary of P. As we rotate the pair of
polygons, these translations trace out curves in the
rotation diagram Rpg, for P and ¢;. By Lemma 2.3,
these curves are the boundary of a (not mnecessarily
connected) containing region in Rp o, corresponding to
all placements of P that contain ¢ (and have ¢; on the
boundary). Let us call this region A,,. We will now
study the properties of Ag,.

At each angle # we can imagine a vertical line
in Rpg,, representing the “unfolded” boundary of the
polygon P rotated by 6. Note that such a line can
intersect at most two of the bounding curves, since
two copies of the same convex polygon at the same
orientation can intersect in at most two distinct points
(or, in the degenerate case, along a consecutive part
of the boundary). In between these two intersection
points, the line intersects the containing region A,
corresponding to the part of the boundary of P; that
is covered by P». We now decompose A,, into smaller
regions bounded on the left and right by certain critical
angles: namely those angles at which a vertex of P
sweeps through 0P, or a vertex of Py sweeps through
9Py (see Figure 3). FEach decomposed region has four
sides, and it is clear by definition that the left and right
sides are vertical lines at the critical angles. In the
case that at a critical angle the polygons start (or stop)



Optimal Placement of Convex Polygons

21 0> O3 04 95 96
)
7777777777777777777777 B
777777777777777777777777 US
‘HH ‘ ‘ v
0 180 270 360

Figure 2: An example of a containing region A,, in the
rotation diagram Rpg, for a triangle P. The critical
angles are marked #; through 6.

being in contact with each other; a vertical bounding
line might degenerate to a point. Figure 2 shows an
example of a containing region in a rotation diagram
for a triangle. The containing region Ay, is traced out
by vertical lines; the critical angles are shown by dotted
lines. Remember that the diagram wraps around.

The obvious next question to ask is: What kind
of curves form the top and bottom boundaries of the
containing region? Lemma 2.4 answers this question,
and Lemmas 2.5 and 2.6 deal with the size and number
of the decomposed regions.

LEMMA 2.4. The upper and lower curves bounding
the decomposed regions of Ay, are sine curves of the
form ¢1 + casin(f + ¢3).

Proof. The key observation for this proof is that
rotating two polygons in tandem is equivalent to keeping
one of the polygons fixed, and translating the other
polygon on a circle around it. No rotation needs to take
place, since the relative orientation of the two polygons
to each other remains constant. Specifically, if we keep
Py in place, every vertex of P describes a circle around
the corresponding vertex of Py (see Figure 3). All circles
have the same radius r, which is equal to the distance
between the points ¢; and ¢2. Between two critical
angles, a bounding curve of A,, is created by some edge
eo of Ps intersecting an edge e; of P;. The y-coordinate
in the rotation diagram is the position of the intersection
point on the circumference of Py, i.e., the position of the
intersection point on e; plus the length ! of all previous
edges of P;. To show that the position of the point of
intersection on an edge with another edge sweeping out
a circle i1s a multiple of a sine function, let us reorient the
coordinate system by a translation that puts the center

117

Figure 3: The underlying geometry for the rotation
diagram in Figure 2. The critical angles correspond to
intersections of circles with edges.

Figure 4: Illustration of Lemma 2.4: Edge e, translating

on a circle intersects edge ey at position zg + Cow sin av.



118

Figure 5: A polygon yielding m? critical angles (m = 8
in the figure). Half of the vertices form a quarter of a
regular polygon that intersects the unit circle m times,
the other half are closesly spaced next to the origin.

of rotation at the origin, and by an angle of rotation ~
such that e, is now vertical. Now, es intersects the x-
axis at rsin a, where o = 8§—~. Let ¢ be the orientation
of e; in our new coordinate system, and let zg be the
length of the part of e; that lies to the left of the y-
axis (see Figure 4). Then, the intersection point on the
circumference of P; is at { + zg + ﬁsin(@ —7), or
c1 + easin(f + c3). O

LEMMA 2.5. Fach decomposed region s at most m
wide.

Proof. A decomposed region is bounded by two
critical angles, which are created by vertices sweeping
through edges of the other polygon. The maximum
width of the regions is bounded by the maximal part
of a circle—centered on a vertex—that lies inside the
polygon, that is, by the biggest angle of the polygon.
Since the polygon is convex, the biggest possible angle
s . ad

LEMMA 2.6. Ay, is decomposed into at most O(m?)
reqions.

Proof. Polygon P has m vertices and edges. Each
vertex can sweep through an edge of the other polygon
at most twice. i

LEMMA 2.7. The bound in Lemma 2.6 1s tight, i.e.,
there are cases yielding Q(m?) decomposed regions.

Proof. We construct an example resulting in m?

critical angles. See Figure 5 for illustration. We con-
struct a polygon by placing m/2 vertices such that they
form a quarter of a regular 4(%5 — 1)-gon, intersecting

Dickerson and Scharstein

the unit circle m times (the intersections are marked
with crosses). Let ¢ be the maximum variation of the
radius of the circle still yielding m intersections. Place
the other m/2 vertices such that they form a rounded
corner less than e away from the origin. Now, for two
points q1, g2 of distance 1, the rotation diagram has m?
critical angles as the m/2 closely spaced vertices of each
copy of the polygon intersect m times edges of the other
copy of the polygon as # ranges from 0 to 27. a

2.2.3 Generalization to Multiple Points

For a given point ¢;, we can compute the containing
regions Ay, in Rpg, for all other points ¢;,j # i. For
points ¢; and gy, the regions Ay, and Ay, may intersect,
indicating a placement of P containing ¢;, ¢; and g¢y.
The deepest point in the arrangement of all containing
regions gives us the rotation and translations keeping ¢;
on the boundary and containing the maximum number
of other points in S. We compute these arrangements
of containing regions for all rotation diagrams Rp 4, and
compute the deepest arrangement in all n diagrams.
See Figure 6 for an example of an arrangement of 4
containing regions.

Besides the problem considered in this paper, rota-
tion diagrams also have applications in robot motion
planning: Note that the rotation diagram Rp, rep-
resents the configuration space of a convex polygonal
robot P that must stay in contact with a point ¢ (say,
a power source). A path in Rp, that does not cross
any boundaries of containing regions corresponds to a
collision-free motion of P avoiding (or containing) a
given set of points while keeping ¢ on the boundary
of P. The tools to compute and search arrangements
of containing regions in rotation diagrams developed in
this paper can also be used to compute such collision-
free paths efficiently.

3 The Algorithm

Figure 7 presents the algorithm for the solution to Prob-
lem 1. The correctness of this algorithm follows from
the lemmas and discussion of Section 2. In particular,
Lemmea 2.1 tells us that we only have to consider transla-
tion stable placements. From Lemma 2.3 we see that the
regions in the rotation diagrams correctly correspond to
placements (rotations and translation) containing the
specified points. The trick 1s to compute these con-
taining regions, and to find the maximum depth. The
methods for these tasks are described in the following
sections.

3.1 Computing the Regions

Given polygons F; and P;—that is, given the poly-
gon P translated to points ¢; and ¢;—we describe how



Optimal Placement of Convex Polygons

119

r“”
|

———F——

90

Figure 6: An arrangement of four containing regions.

I. Preprocessing:

Preprocess points into buckets. For all points
q; € S, we define B; as the set of buckets that could
intersect a placement of polygon P containing point

q;.

II. Iteration:
1. Set max:=0
2. FOR each point ¢; € S DO BEGIN

3. Initialize rotation diagram Rp g,
4. FOR ecach j #4 and ¢; € B; DO
Compute containing region Ay, in Rpg,
5. Use line sweep to compute point z of
maximum depth d in the arrangement
of all containing regions Ay,
6. IF d > max THEN
Set max := d; Store z
7. END FOR

Figure 7: Algorithm 1

270 360

The deepest point in the arrangement is marked with a
white dot. The corresponding transformation of the polygon (yielding containment of all four points) is drawn
on the left. The tranformation corresponding to the origin of the rotation diagram is shown dashed.

to compute the containing region A,; in the rotation
diagram Rpg;.

We saw in our proof of Lemma 2.4 that rotating
the two polygons in tandem is equivalent to sweeping
polygon P; in a circle with the orientation remaining
fixed. Specifically, each vertex in P; moves around the
corresponding vertex in F; on a circle whose radius is the
distance from ¢; to ¢;. We see that a given vertex of P;
can pass through a given edge of P; at most two times.
Likewise, a given vertex of P; can be swept through by
a given edge of P; at most two times. For each vertex-
edge or edge-vertex pair, we can explicitly compute the
angles of rotation causing an intersection in constant
time by intersecting a circle with a segment. We have
a total of m? work to compute these angles. We sort
these in O(m?logm) time, and use them to compute at
most m? decomposed regions of Ay,

3.2 Complexity of the Arrangements via Line
Sweep

Given the rotation diagram Rp,, for a point ¢,
we now show how the depth of the arrangement of all
containing regions Ay, j # 1, in Rp,, can be found.
We use a line sweep with a vertical line through all
angles of rotation #. The events in the line sweep
consist of the discrete set of angles marking the left and
right boundaries of the decomposed regions, and the
intersections between different sine curves forming the
top and bottom boundaries of the decomposed regions.
A segment tree, modified for sine curves, can be used as



120

the data structure.

Note first that in rotation diagram Rp 4, there are
n — 1 containing regions Ag;, each decomposed into
at most O(m?) subregions. At any given angle, there
are at most 2n — 2 sine curves to be stored in the
segment tree. This data structure therefore requires
O(n) space and O(logn) time per operation. How
many queue events are there? We can consider the
decomposed regions of each A,; as disjoint. Given
two containing regions Ay, and Ay, note that there
are at most O(m?) pairs of intersecting decomposed
regions, since both sets of decomposed regions are
ordered linearly as we sweep through angles from 0
to 2m. But each such intersecting pair has a bounded
number of intersections since the left and right sides of
the region are vertical lines; and the top and bottom
of the regions are sections of sine curves of less than
7w according to Lemmas 2.4 and 2.5. Therefore there
are at most O(m?) intersections between the two sets of
decomposed regions for each pair Ay, and A, .

Since there are at most (g) pairs of containing
regions (Aq,, Ag, ), there are a total of O(n?m?) events
in the event queue. The following section shows that
we can tighten this bound to O(k?m?) with bucketing,
using O(k) space and O(logk) time for the line sweep
structure.

3.3 Bucketing

Let D be the diameter of the polygon P. If C
is a chord of P of length D, let W be the width of
P perpendicular to C'. Our bucketing strategy is to
bucket space into squares of size D x D, and to place
each point in its correct bucket. The following lemma
1s straightforward and not difficult to prove.

LEMMA 3.1. Any bucket can be tiled by a fized
number ¢ of copies of P, with ¢ dependent only on
the ratio D/W. Furthermore, if any bucket contains
K pownts, then there s a placement of P containing
Q(K/c) points.

A polygon containing a point ¢; in bucket b can
contain only points in b and the 8 buckets neighboring b.
We call this group of 9 buckets B;. In our construction
of the rotation diagram Rp 4, for polygon P and point
¢; we consider only points in B;.

3.4 Overall Analysis

The analysis of the algorithm follows from the
previous sections. For each rotation diagram Rpg,, it
follows from Lemma 3.1 that the number of events in the
line sweep to compute the depth is O(k?m?) and thus
the sweep can be performed in time O(k*m? log(km))

time. As there are n diagrams to test, the total running
time is O(nk?m? log(km)).

Dickerson and Scharstein

3.5 A Bucketless Approach

For “skinny” polygons with a large ratio ¢ =
D/W, the bucketing approach may be inefficient: by
Lemma 3.1, the number & of points covered is propor-
tional to K /¢ where K is the number of points in the
densest bucket. Thus, the exact running time is given by
O(nK?m?log(km)) = O(c*nk?*m?log(km)). The fol-
lowing theorem uses the fact that each intersection event
in our line sweep corresponds to a stable placement with
three points on the boundary of the polygon, and states
that even without bucketing there is still an output sen-
sitive time bound better than O(n®m?log(nm)).

THEOREM 3.1. Given a conver polygon P and
points ¢; and q;, let k be the number of points ¢ € S
such that ¢' is at least as close to ¢; as q;, and there
is a stable placement of P with ¢;, q;, and ¢' on the
boundary. Then there is a placement of P covering (k)
points in S.

This theorem tells us that for any rotation diagram
Rpg,, the number of intersections between pairs of
containing regions is bounded by O(nk) where k is the
depth of the maximum arrangement. This leads to the
following theorem.

THEOREM 3.2. When no bucketing s used, Algo-
rithm 1 runs in O(n?km?log(nm)) time.

This analysis is independent of the ratio D/W and
shows that the algorithm even without bucketing is still
asymptotically faster than those based on the results of
[3] and [6] by factors of n?/k and k? respectively.

4 Bichromatic and Weighted Variants

The algorithm presented here can easily be extended
to a more general version of the problem. Consider
a set S where each point ¢; is given a weight W(g;).
Instead of maximizing the number of points covered,
we want to maximize the total weights of all points
contained. If all weights are greater than or equal to
zero, then Lemma 2.1 still applies where &k becomes
the total weight of the contained points rather than the
number of contained points. The algorithm runs with
no modifications.

However, if W (g;) < 0 for some points in the set,
then it is possible that there is no stable placement that
maximizes the total weight of the points covered. (It is
not difficult to give an example where the only stable
placement covering the same points as that covered
by the maximal placement also covers an additional
negatively weighted point.) In particular, consider the
bichromatic version where the set .S is divided into two
subsets 5, and S, and the goal is to find a placement
that maximizes the number of points contained from
S, and minimize the number contained from S,. This



Optimal Placement of Convex Polygons

is the weighted variant where all points in S, have
weight 1 and all points in Sy have weight —1. Another
bichromatic problem, to maximize points covered in S,
while covering no point in Sy, can be solved by assigning
weight 1 to the points in S, and the weight —|S,| to the
points in S,. The solution to the problem is not difficult.
For each placement p with a negatively weighted point
¢; on the boundary, we look for a “nearby” placement
pe that contains the same points but does not contain
g;- The same idea can be applied in the degenerate
case where multiple points lie on the boundary, though
if there 1s more than one negatively weighted point on
the boundary then the ¢ translation will not necessarily
exist. Thus with minor modifications, the algorithm can
be used to solve both the bichromatic and the general
weighted variant of the problem with the same running
time.

5 Summary

We have provided the asymptotically fastest known
solution to the problem of computing a placement
(translation and rotation) of a given convex polygon
P containing the maximum number of points of a
given point set S. We have shown that the algorithm
requires output-sensitive O(n?km? log(nm)) time and
O(n + m) space, where n is the number of points in
S, m is the number of vertices of P, and k is the
maximum number of points contained (k < n). Using
bucketing, we achieve an even better time bound of
O(c*nk?m? log(km)), where c is the ratio of longest to
shortest diameter of P.

The algorithm is conceptually simple and self-
contained. It uses a line sweep of an arrangement of
containing regions in a rotation diagram. The rotation
diagram can also be used to solve motion planning prob-
lems in which a convex polygonal robot must stay in
contact with a certain point while avoiding or contain-
ing other points. The algorithm generalizes at no cost
in running time not only to solve the bichromatic vari-
ant of the problem, but the more general weighted point
set problem. It is asymptotically faster than the best
previously known approaches by at least a linear factor,
and as much as n® depending on &, the number of points
covered.

5.1 Extensions and Open Problems

There are obvious generalizations of Problem 1. We
may consider containment of arbitrary simple polygons
or containment by polyhedra in higher dimensions.

PROBLEM 2. Ghven a simple polygon P and a pla-

nar point set S, find a rigid motion (or even just a trans-
lation) p that mazimizes the number of points contained

by p(P).

121

PROBLEM 3. Given a convexr polyhedron P and a
point set S in IR, find a rigid motion p that mazimizes
the number of points contained by p(P) over all possible
rigid motions.

Acknowledgements
This paper benefited from discussions with Scot
Drysdale, Amy Briggs and Mark Montague.

References

[1] G. Barequet, M. Dickerson, and P. Pau. Translating
a convex polygon to contain a maximum number
of points. In Proc. 7th Canadian Conference on
Computational Geometry, pages 61-66, 1995.

[2] S. Chandran and D. Mount. A parallel algorithm for
enclosed and enclosing triangles. Int. J. Computational
Geometry and Applications, 2(2):191-214, 1992.

[3] B. Chazelle. The polygon placement problem. In
F. Preparata, editor, Advances in Computing Research:
Volume 1, pages 1-34. JAI Press, 1983.

[4] A. Datta, H. Lenhof, C. Schwarz, and M. Smid. Static
and dynamic algorithms for k-point clustering prob-
lems. In Proc. 8rd Workshop on Algorithms and Data
Structures, pages 265-276. Lecture Notes in Computer
Science 709, Springer Verlag, New York, 1993.

[5] A. Efrat, M. Sharir, and A. Ziv. Computing the small-
est k-enclosing circle and related problems. Computa-
tional Geometry: Theory and Applications, 4:119-136,
1994.

[6] D. Eppstein and J. Erickson. Iterated nearest neigh-
bors and finding minimal polytopes. Discrete and
Computational Geometry, 11:321-350, 1994.

[7] V. Klee and M. Laskowski. Finding the smallest trian-
gles containing a given convex polygon. J. Algorithms,
6:359-375, 1985.

[8] J. O’'Rourke, A. Aggarwal, S. Maddila, and M. Bald-
win. An optimal algorithm for finding minimal enclos-
ing triangles. J. Algorithms, 7:258-269, 1986.

[9] M. Overmars and C. Yap. New upper bounds in Klee’s

measure problem. STAM J. Computing, 20:1034-1045,

1991.

F. Preparata and M. Shamos. Computational Geome-

try. Springer Verlag, New York, 1985.

G. Toussaint. Solving geometric problems with the

rotating calipers. In Proc. IFEF MELFCON ’83,

Athens, Greece, 1983.

[10]

[11]



