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Abstract

We present a simple yet powerful method to per-
form point-to-point matching between two images. The
method uses an evidence measure, whose value for a
given displacement reflects both the similarity between
two locations and the confidence in a correct match.
The measure is based on the gradient fields of the im-
ages, and can be computed quickly and in parallel.
Accumulating the evidence measure for different dis-
placements allows (1) stable computation of correspon-
dences without smoothing across motion boundaries,
and (2) detection of dominant motions. The method
works well both on highly textured images and on im-
ages containing regions of uniform intensities, and can
be used for a variety of applications, including stereo,
motion, and object tracking.

1 Introduction and related work

A fundamental problem in computer vision is the
so-called correspondence problem, that is, to establish
point-to-point correspondences across a pair of images.
Most algorithms for computing correspondence have a
point-oriented control strategy: For each location in
one image, find the displacement that aligns it with
the best matching location in the other image. The
method presented here uses a displacement-oriented
control strategy: Given a certain displacement, find
all the locations that match well. Under the assump-
tion that the motion between two images can be lo-
cally approximated by pure translation, near points
corresponding to the same object have similar dis-
placements, which can be detected by accumulating
evidence for matches over a larger area.

To compare locations in two images, most exist-
ing methods rely on a similarity criterion reflecting
how well two locations in the two images resemble
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each other, and also sometimes on a confidence cri-
terion reflecting the likelihood that a match is correct
[1]. While these two criteria are usually treated sep-
arately, our method uses a single measure based on
the gradient fields of the images, which—given a cer-
tain displacement—gives a (strong) positive response
where points match with (high) confidence, a negative
response where there is a clear mismatch, and zero re-
sponse in regions where there is neither evidence for
a match nor evidence against. This approach has the
following advantages:

e The evidence measure is local and can be com-
puted quickly and in parallel.

e For a given displacement, the measure can be ac-
cumulated by averaging over a larger area. The
average value represents evidence for or against
a match, enabling the use of a displacement-
oriented control strategy.

¢ Finding maxima in the accumulated measure is a
stable way of computing correspondences without
smoothing across motion boundaries.

For reviews of correspondence methods see [1, 2.
Seitz [8] uses local gradients for object recognition.
Prazdny [6] describes a stereo algorithm that collects
support for different disparity hypotheses similarly to
our method, but requires an initial set of possible dis-
parity hypotheses collected by explicit feature match-
ing. Coombs and Brown [3] describe an active stereo
vision system that finds points at the depth of fixa-
tion by means of a feature-based zero-disparity filter.
Olson and Lockwood [5] describe a way of disparity
filtering using a multi-scale correlation method. Both
approaches differ from ours in that they do not return
a measure that reflects the evidence for a match at a
certain position. Discussion of other related work can
be found in the full paper [7].

2 Measuring evidence for matches

As mentioned above, our method combines the no-
tions of similarity and confidence (or distinctiveness)



into a single measure of evidence for or against a
match based on the two gradients at a certain loca-
tion. In particular, if gz, gr are the two gradient vec-
tors to be compared, we use their average magnitude
m = (|gL| + |gr|)/2 to represent confidence, and the
negated magnitude of their difference —d = —|gr —gxr)|
to represent similarity. We define the evidence for a
match to be the sum of these two terms: e = m — d.
For illustration, we compare vectors of length m and
0 in the following examples:
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If both gradients are zero, one can’t tell whether or
not they match, and consequently e = 0. (The mea-
sure ignores the original intensities, although one can
argue that they provide additional information. How-
ever, comparing absolute intensities has proven to be
not very stable in practice.) Note that e can also be
zero for two non-zero gradient vectors, for example, in
the case of two vectors of equal length defining an angle
of 60°. Intuitively, this reflects the situation where the
directions of gradients are too different to be consid-
ered a match, but not different enough to be counted
as a mismatch. Figure 1 is a contour plot of e for com-
paring any vector (z,y) to the unit vector (1,0). The
unit vector of angle 60° is shown as an example; note
that its endpoint lies on the e = 0 curve.

We now extend the measure to entire images. Let
Ip, I be two images, and let Gz, Gg be their gradi-
ent vector fields. For a given displacement § = (84, 6y),
the evidence Fs for a match at (z,y) is

Es(z,y) = 3 (IGr(z,9)|+|Gr(z + 6,y + 6,)])
_lGL(‘T’y) - GR(JZ + 60”?/ + (5y)|

In order to apply the method to discrete images, we
approximate the gradients by differences after initial
smoothing to compensate for quantization error and
noise. In the experiments reported here, we used a
Gaussian filter with ¢ = 0.5. It should be noted that
E;s can be computed very fast, since only a few floating
point operations and a single square root is needed at
each pixel (the two magnitudes of gradients |G| and
|Gg| only need to be computed once). The local na-
ture of the computations makes the method ideally
suited for a parallel implementation. A sequential im-
plementation on a Sparc workstation takes less than
one second to compute Ej for a 256 x 256 pixel image.
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Figure 1: Contour lines of e for the vector (1,0)

3 Accumulating results

To find the best match for an isolated point, all we
can do is to maximize E;s at this point for all § un-
der consideration. Doing so independently for every
point is not very stable and might produce a noisy
and inconsistent displacement field. To deal with this
problem, motion computation methods usually make
the assumption that nearby points have similar dis-
placements, based on the observation that motion in
real scenes varies smoothly almost everywhere. Fur-
thermore, it is often assumed that motion can be
described locally by pure translation, i.e., rotational
components and effects of perspective foreshortening
are small enough. Many point-oriented methods uti-
lize the assumption of a smooth motion field after com-
puting initial matches by smoothing the displacement
field, often employing some confidence measure associ-
ated with each match to constrain the smoothing pro-
cess [4, 1]. The problem is that this tends to smooth
over motion discontinuities, which contain important
information about the scene geometry.

In contrast, our displacement-oriented method uses
the assumption of a smooth motion field while finding
the matches. The idea is that if a certain displace-
ment 6 aligns two matching objects, Fs will have a
strong positive response at the location of the match.
By accumulating Es over a certain area (i.e., comput-
ing the average or smoothing with a Gaussian filter),
dominant motions can be detected. That is, only the
correct displacement Es will yield support for a match
over a larger area, thereby creating a maximum among
all 6 under consideration. Note that our method does
not smooth over motion boundaries, since it is not as-
sumed that all close pixels have the same disparity. A
point on a motion boundary will give rise to a positive



response for two different displacements, correspond-
ing to the two different motions. If necessary, the local
response at that point can help to break the tie.

E;s can also be accumulated over very large areas,
such as a quarter of the image or even the entire im-
age, to find an initial set of interesting displacements.
Since most displacements will only align a small subset
of features, only the displacements that align larger
parts of the image will yield an above-average re-
sponse, which can serve to select an initial set of dis-
placements, for which the matching with smaller win-
dows is undertaken. A scale-space approach could be
used to speed up the initial selection of interesting dis-
placements. Peaks in the accumulated ;s as a function
of § can also serve as attention cues for active vision
systems.

4 Experiments

A striking experiment is to just observe E;s for dif-
ferent displacements §. As test data we use a stereo
pair from the street image sequence!, depicting a
woman crossing a street (Figure 2, top row). This im-
age pair is an interesting example in that it contains
large regions with little texture. Also, the absolute
intensities are quite different between the two images.
To illustrate the power of using maxima in the accumu-
lated measure Fs as attention cues, we have selected
the displacements that yield the strongest response
(maximal ) Es) in each quadrant of the image. Rows
2 and 3 in Figure 2 show Ejs for the resulting four dis-
placements §. Gray corresponds to a value of 0, light
to positive values, and dark to negative values. Note
that these displacements align the dominant features
in each quadrant. One can also see that the measure is
not sensitive to the brightness difference between the
original images.

We implemented a simple stereo matcher that uses
the evidence measure to select matches. For a range
of different §, We accumulate Fs by smoothing with
a Gaussian filter with ¢ = 2. The disparity at each
point is taken to be the displacement that maximizes
the accumulated measure at this point. We ran the
matcher on two highly textured images from the Stan-
ford tree sequence?. The considered range of dispar-
ities is 6, = 0...12. Simply picking maxima in the
accumulated measure already gives surprisingly good
results. Figure 3 shows one of the original images and
the computed disparities, which are displayed with dif-
ferent gray levels: lighter corresponds to closer, darker
to farther away.

IThe street images were provided by Wilfried Enkelmann.
2The tree images were provided by SRI.

Figure 2: The street image pair and plots of E;s for the
maximizing displacements ¢ for each quadrant.

The next experiment shows how confidence can be
incorporated in the matcher to be able to deal with
images with less texture, where it is harder to find
clear maxima in the evidence measure. An advantage
of the measure we use is that the value of the achieved
maximum is related to the gradient magnitude at that
point, and thus represents the confidence for the match
being correct. To demonstrate this, we will use the
street image pair described above. Unreliable matches
can be suppressed by setting a threshold for the ac-
tual achieved maximum at each point. Figure 4 shows
the disparities in different gray levels; in the right im-
age all unreliable matches are displayed in black. The
considered range of disparities is §; = —3...21. Note
that while feature-based matchers try to decide before-
hand which locations to match, our method allows the
selection of reliable points after the matching process.

To test the method on general motion, we used two
images from the cat sequence®. This sequence depicts

3The cat images were provided by John Woodfill.



Figure 4: Disparities for the street images. In the right
image, uncertain matches are displayed in black.

a cat walking on a lawn in front of some bushes. The
camera follows the cat, so that the visual motion of the
cat is almost only caused by its (non-rigid) change of
shape, whereas the background moves by more than 10
pixels to the left. Like the tree images, the cat images
are well textured, so we don’t use the confidence infor-
mation here. Figure 5 shows one of the original images
and the z-components of the displacements that maxi-
mize the accumulated measure. The considered ranges
are 6, = —15...4, 6, = —2...1; accumulation is done
with a Gaussian filter with o = 2.

5 Conclusion and future work

We have presented a simple yet powerful method to
perform point-to-point matching between two images.
The method uses an evidence measure that is based
on the gradient fields of the images and that combines
the notions of similarity between two locations, and
confidence for a correct match. The computation of
the measure is simple and highly parallelizable. For a
given displacement, the measure can be accumulated
over a larger area, to collect evidence for or against a
match at this location. Using a displacement-oriented
control strategy that accumulates evidence for a range
of different displacements, dominant motions can be
detected, which can serve as attention cues in an ac-
tive vision system. Finding maxima in the accumu-
lated measure is a stable way of computing correspon-
dences without smoothing across motion boundaries.

Figure 5: Disparities for the cat images.

The method works well both on highly textured im-
ages and on images containing regions of uniform in-
tensities, and can be used for a variety of applications,
including stereo vision, motion segmentation, object
tracking, and active vision.

A problem with the measure discussed here is that
partially aligned intensity edges yield a positive re-
sponse, which can make it hard to find the component
of the displacement that is parallel to this edge. For
example, in Figure 4 one can observe errors in the com-
puted disparities of the street marks in the foreground
of the scene. This is due to the so-called aperture prob-
lem, which states that, locally, only the component of
displacement in the direction of the intensity gradient
can be recovered. A possible way to deal with this
problem is to use a measure that is only sensitive to
corners. We are currently investigating functions that
combine gradients and traditional “cornerness” mea-
sures, as well as measures that combine original inten-
sities, first and second order derivatives. See the full
paper [7] for other possible extensions.
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