In groups of 3, work out answers to the following questions on paper. No computers unless stated.

1. Linear regression minimizes \(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2 \)

 Consider a “featureless” minimization problem with \(n=0 \), i.e., you have no inputs \(x \), just outputs \(y \). What is the equation for \(J \)? (Hint: you still have \(\theta_0 \)).

2. Write down a random set of \(m=5 \) or \(m=6 \) integers \(y^{(i)} \) between 0 and 10. Using graph paper (I’ll provide), plot \(J \) for \(\theta_0 = 0, 1, 2, ..., 9, 10 \). (Divide the work among the group members.) For simplicity, you can ignore the \(\frac{1}{2m} \) term. You may use a calculator, but you may not write a program. Which value minimizes \(J \)? How could you compute this value from the \(y \) values directly?

3. You may have wondered why the cost function uses the \textit{squared} errors. While this works well when the data is fairly clean, it doesn’t work well in the presence of outliers (e.g., if one of the \(y \) values from the previous problem was 1000). In the presence of outliers, a \textit{robust} cost function works better (but may be harder to minimize). One such robust function is the sum of the absolute (rather than squared) errors:

 \[A(\theta) = \frac{1}{2m} \sum_{i=1}^{m} |\theta^T x^{(i)} - y^{(i)}| \]

 Using your data points from the previous question, plot \(A \) on a new piece of graph paper (again, ignore the \(\frac{1}{2m} \) term), and find the value that minimizes it. Is that value unique? How could you compute this value from the \(y \) values directly?

4. Normal equation

 Consider the (single-variable) linear regression problem shown above. Write down the 5x2 input matrix \(X \) and the 5x1 output vector \(y \).

 Compute \(X^T X \) as well as \(X^T y \) by hand and verify your results in Octave.

 Recall that you can solve for \(\theta \) via the normal equation

 \[\theta = (X^T X)^{-1} X^T y \]

 Compute \(\theta \) in Octave using the “\text{inv}” function. What is 57*\(\theta \)?

 Also compute the hypothesis \(\hat{y} = X \hat{\theta} \), i.e. the predicted \(y \) values, and sketch the line in the above image (draw on this worksheet).