
Four-dimensional anisotropic mesh adaptation

Philip Claude Caplana,∗, Robert Haimesb, David L. Darmofalb

aMiddlebury College, Department of Computer Science
bMassachusetts Institute of Technology, Department of Aeronautics & Astronautics

Abstract

Anisotropic mesh adaptation is important for accurately simulating physical

phenomena at reasonable computational costs. Previous work in anisotropic

mesh adaptation has been restricted to studies in two- or three-dimensional

computational domains. However, in order to accurately simulate time-

dependent physical phenomena in three dimensions, a four-dimensional mesh

adaptation tool is needed. This work develops a four-dimensional anisotropic

mesh adaptation tool to support time-dependent three-dimensional numerical

simulations. Anisotropy is achieved through the use of a background metric

field and the mesh is adapted using a dimension-independent cavity frame-

work. Metric-conformity – in the sense of edge lengths, element quality and

element counts – is effectively demonstrated on four-dimensional benchmark

cases within a unit tesseract in which the background metric is prescribed

analytically. Next, the metric field is optimized to minimize the approxima-

tion error of a scalar function with discontinuous Galerkin discretizations on

four-dimensional domains. We demonstrate that this four-dimensional mesh

adaptation algorithm achieves optimal element sizes and orientations. To

our knowledge, this is the first presentation of anisotropic four-dimensional

meshes.

Keywords: mesh adaptation, metric-conforming, four-dimensional, function

approximation, high-order finite elements

∗Corresponding author
Email addresses: pcaplan@middlebury.edu (Philip Claude Caplan), haimes@mit.edu (Robert

Haimes), darmofal@mit.edu (David L. Darmofal)

Preprint submitted to Computer-Aided Design July 15, 2020

x

t

;

δ

(a) Uniform refinement

x

t

;

δ

(b) Tensor-product refinement

x

t

;

δ

(c) Unstructured approach

Figure 1: Uniform, tensor-product and unstructured adaptation approaches for capturing the
propagation of a one-dimensional feature.

1. Introduction

The increase in computational power in the last several decades has given

rise to efficient algorithms for predicting engineering quantities of interest

with numerical simulations. In particular, high-order finite element methods

combined with mesh adaptation techniques for numerically solving partial5

differential equations have demonstrated their potential for accurately predict-

ing these quantities. Yano and Darmofal [1] remark upon the importance

of mesh adaptation when using high-order discretizations for estimating the

drag and lift with the Reynolds-Averaged Navier-Stokes equations. This find-

ing is further supported by the CFD Vision 2030 study [2] in which the au-10

thors emphasize the development of (1) mesh adaptation and (2) high-order

discretizations to achieve an autonomous and reliable CFD simulation.

For the calculation of time-varying quantities of interest, first consider a

one-dimensional (1d) problem with a propagating feature of characteristic size

δ (moving from left to right in Fig. 1). A purely spatial mesh would require15

elements of width ∆x < δ near the feature to accurately resolve its position.

Now, to accurately track the position in time, a traditional time-marching

approach would require a small time step (∆t).

In a fully coupled spatiotemporal approach, elements can be constructed

2

from the tensor product of a spatial element with a time interval – see the20

pioneering work of Oden [3], Argyris and Scharpf [4] and Fried [5]. That

is, a two-dimensional (2d) mesh is used for the coupled 1d + t problem and

a three-dimensional (3d) mesh is used for the coupled 2d + t problem. This

coupling method enables the use of a wide range of adaptation techniques,

ranging from timeslab to fully unstructured approaches.25

First, a timeslab approach constructs spacetime elements as the tensor-

product of a (possibly unstructured) spatial element with a time interval.

These are simpler than fully unstructured spatiotemporal approaches because

they essentially require spatially-adapted meshes. The coupled spatiotempo-

ral mesh can be constructed in several ways. Behr extrudes an initial spatial30

mesh to form prismatic elements which are then subdivided to form sim-

plices [6]. Temporal refinement is achieved by inserting vertices along edges

formed during this extrusion process. The Tent Pitcher algorithm of Ungor [7]

and Erickson [8] is essentially an advancing front method, starting from an ini-

tial spatial mesh and inserts points in the temporal direction to satisfy a cone35

constraint imposed by the characteristics of the governing partial differential

equation. This method was extended to the 3d + t case by Mont [9]. Thite [10]

improved the Tent Pitcher algorithm to also allow for coarsening of 2d + t

spatiotemporal meshes.

Fidkowski also employs a tensor-product approach for the solution of the40

compressible Navier-Stokes equations [11, 12] in which the spatial mesh is

fixed and the temporal discretization is refined by bisecting the time intervals.

In other words, each spatial element at a particular time takes the same time

step.

Bangerth and Rannacher [13] employ a hierarchical refinement approach to45

subdivide quadrilateral spatiotemporal elements in a tensor-product manner

(Figure 1b). Their adaptive method is driven by the dual-weighted residual

error estimator. They demonstrate the approach on linear second-order hy-

perbolic problems in 1d + t and later to 2d + t [14]. They conclude that their

refinement approach is superior to uniform refinement approaches (Figure 1a)50

3

in achieving a lower output error at a lower degree-of-freedom (DOF) count.

The advantage of this tensor-product approach was further demonstrated for

Burger’s equation by Hartmann [15].

Yano demonstrates that these tensor-product approaches are effectively

isotropic and, whereas they offer a substantial DOF savings over uniform re-55

finement, they are dramatically outperformed by a fully unstructured anisotropic

approach. In the context of the one-dimensional problem of Figure 1 with

a propagating feature of characteristic size δ, Yano experimentally observes

that uniform (Figure 1a), tensor-product (Figure 1b) and anisotropic refine-

ment approaches (Figure 1c) respectively require O(δ−2), O(δ−1) and O(1)60

DOF. Yano further demonstrates his approach for nonlinear 2d + t problems

which is later extended to oil reservoir simulations by Jayasinghe [16]. In fact,

Jayasinghe [17] is the first to demonstrate that a spatiotemporal approach also

scales very well with the number of parallel processors when compared to

time-marching approaches. To enable fully unstructured adaptive numerical65

simulations for the resolution of unsteady 3d physical phenomena, unstruc-

tured anisotropic four-dimensional (4d) meshes are needed for the coupled

3d + t spatiotemporal domain.

Foteinos et al. employ a Delaunay refinement algorithm to construct 4d

meshes for 3d + t image data in which the topology and geometry of the70

evolving object can change significantly in time and provide bounds an the

aspect ratios of the pentatopes [18]. Belda-Ferrín et al. present a conformal

bisection procedure for local isotropic refinement of 4d meshes [19] and ensure

the quality of the pentatopes does not degenerate upon successive refinement

stages. Previous efforts attempt to generate geometry-conforming 4d meshes75

from the restricted Voronoi diagram [20].

Local mesh modification operators, such as edge splits, edge collapses, edge

swaps, face swaps, vertex smoothing, are popular for constructing adapted meshes.

Software packages such as feflo.a [21], EPIC [22], refine [23], gamanic3d [24],

pragmatic [25], omega_h [26] and MMG [27] successfully produce adapted meshes80

for either 2d or 3d computational domains. Inspired by the work of Coupez [28]

4

and Gruau [29], we pursue a dimension-independent approach. The afore-

mentioned authors focused on 3d applications; in 4d, they only demonstrated

their mesh adaptation capability for the special case of a uniform Euclidean

metric. Furthermore, Tremblay also attempted to use local operators to adapt85

4d meshes [30]. He used edge splits and collapses but avoids edge swap-

ping by employing a combination of point insertions and collapses to simulate

an edge swap. His algorithm does not seem capable of producing metric-

conforming meshes since the resulting edge lengths are short and the element

quality is very poor, even for an analytic metric with a maximum aspect ra-90

tio of 10:1. Tremblay further attempted to demonstrate his algorithm for the

solution of the unsteady heat equation in 3d + t but the resulting mesh is

isotropic.

At the time of this writing, a truly anisotropic metric-conforming mesh

adaptation capability has yet to be demonstrated in 4d. Our dimension-95

independent approach, described in Section 2, is a fusion of the star operator

of Coupez [28] with the cavity operator of Loseille [21]. We then apply our

algorithm to problems within the four-dimensional domain of a unit tesser-

act. We first verify that our algorithm produces metric-conforming meshes in

Section 3 in which a background metric field is prescribed analytically. Next,100

we consider the optimal approximant of a scalar function defined on the unit

tesseract with discontinuous Galerkin discretizations. In Section 4 we verify

that the optimal mesh size and aspect ratio distributions are achieved.

2. Mesh adaptation via local operators

First, we review some notation that is used in our dimension-independent105

mesh adaptation algorithm. Let V be a set of vertices in Rn. A mesh, M
of some domain Ω, is a pair (V , T) where T represents the topology that

references the set of vertices V . T is a collection of topological elements,

T = κ0 ∪ κ1 · · · ∪ κm, where the element indices correspond to the vertices V .

The boundary of the mesh, denoted by ∂M = (V , ∂T), is a mesh itself,110

5

v
p

q

(a) Cavity about vertex v.

e1

e2

p
r

q

s

t
u

v

(b) Cavities about edges e1 and e2.

Figure 2: Identification of a set of cavity elements. Elements in gray (shaded) form the cavities
C(v), C(e1) and C(e2). The boundaries of each cavity are outlined in red (thick).

and is the set of (n − 1)-facets that appear as a facet of only one simplex of

the mesh. Any (n− 1)-facet (also a simplex) that is shared by two simplices is

not on the boundary, but is interior. The extraction of the boundary is purely

topological (i.e., we only need to determine ∂T).

We study n-simplicial meshes embedded in Rn. Thus a physical element115

κ should be understood as the convex hull of the vertices indexed by the

topological element κ, and is denoted by V(κ).

2.1. Dimension-independent local operators

Given an initial n-simplicial mesh M = (V , T) of some domain Ω ⊂
Rn, a local operation on M consists of the transformation of its topology

T [28, 29, 21]:

T k+1 = T k \ Ck(f) ∪ Bk(p, ∂Ck) (1)

where the superscripts represent the sequence of meshes at each application

of the cavity removal, Ck(f), and the insertion, Bk(p, ∂Ck). Ck(f) denotes

the set of cavity elements about a j-dimensional facet f ⊂ T k which might

be enlarged to ensure topological and geometric validity. This set of cavity

elements can be written as

Ck(f) =
{

κ
∣∣ f ⊂ κ, ∀κ ∈ T k

}
. (2)

6

v
p

q

(a) Valid insertion for the cavity of Fig. 2a.

p
r

q

s

t
u

v

(b) Valid insertions for the cavities of Fig. 2b.

Figure 3: Selection of the re-insertion vertex to produce valid meshes. The set of insertion ele-
ments is shown in red which is obtained by selecting a vertex and connecting it to the boundary
of the set of cavity elements, thickly outlined in red. After extracting the set of cavity elements
C(e1), possible re-insertion candidates include vertices p, q, r and s. However, candidates q and s
create invalid meshes. Also observe that selecting either p or r as the re-insertion vertex maintains
the original configuration of Fig. 2a. In comparison, any of the re-insertion vertices s, t, u or v
produce valid meshes when connected to the boundary of the cavity C(e2).

Often f is chosen from the set vertices (as integers) or edges of T k, as in the

work of Gruau and Coupez [31]. For a vertex v and edges e1 and e2, the120

corresponding cavities C(v), C(e1) and C(e2) are shown in the gray (shaded)

triangles of Fig. 2. The boundary of the cavity, ∂Ck(f), is outlined in red

(thick). Note that two possible cavities are shown in Fig. 2b about edges e1

and e2.

The insertion operator, Bk(p, ∂Ck), is obtained by connecting some (possi-

bly new) vertex p with the set of (n− 1)-dimensional facets in ∂Ck which do

not contain p [28, 29]. Mathematically,

Bk(p, ∂Ck) =
{

κ
∣∣ κ = {p} ∪ g, g ∈ ∂Ck, p /∈ g

}
. (3)

where g is a (n− 1)-dimensional facet on the boundary ∂Ck. The re-insertion125

vertex p is often chosen from the set of vertices in the cavity, though Loseille

allows it to be outside the cavity.

Superscripts will now be dropped for brevity. Following the example of

Fig. 2, possible insertions are shown in red of Fig. 3. Note that in Fig. 3a,

7

the vertex p was selected as the re-insertion vertex because the re-insertion

vertex q would create an invalid mesh. To see this, observe that not every

facet in the boundary is visible to q. As a result, Loseille proposes to iteratively

enlarge the cavity until q is visible to the boundary of the cavity [21]. The set

of re-insertion elements should satisfy a volume criterion:

v(conv(V(
κ︷ ︸︸ ︷

{p} ∪ g))︸ ︷︷ ︸
κ

) > 0, ∀g ∈ ∂C, p /∈ g. (4)

This volume can be computed with exact geometric predicates, which we

develop for the case of pentatopes using the Predicate Construction Kit of

Lévy [32], thus providing an orient4d function similar to that of the orient2d130

and orient3d [33] capabilities.

Similarly, Coupez enlarges an initial set of cavity elements C(f) to include

those simplices in T which are in the closure of the vertices of the origi-

nal cavity N (C(f)), where N (·) retrieves the set of vertices (as integers) in

the provided set of elements. Combined with his minimum volume principle,135

Coupez initially demonstrated this guarantees the topological validity of the

mesh [28]. In contrast to the works of Loseille and Coupez, we do not allow

cavities to enlarge, which simplifies the implementation of our method.

2.2. Maintaining a valid mesh

The first thing we do when checking for the validity of a local operator is140

to check whether the proposed re-insertion vertex is visible to the boundary

of the removed cavity using Eq. 4 as in the work of Loseille [21]. This allows

us to geometrically filter out operators that would create invalid meshes.

Furthermore, we close the mesh such that it is without boundary, similar

to the work of Coupez and Gruau [28, 29]. To achieve a mesh without bound-145

ary, a ghost (fictitious) vertex is created for each connected boundary. This

vertex is then connected to the boundary facets of the original mesh and the

resulting (ghost) simplices are appended to this incoming mesh. Without loss

of generality, consider a mesh with a single connected boundary, such as that

8

of a n-cube with no interior holes. Denote the ghost vertex as v0 and the in-150

coming mesh as T0. The closed mesh is obtained by defining a set of ghost

simplices: Tg = {{v0} ∪ g | ∀g ∈ ∂T0} . The full topology of the mesh now

becomes the union of the simplices in the incoming mesh with the ghost sim-

plices: T = T0 ∪ Tg. By working with a closed mesh, we ensure that ∂T = ∅

and should remain so upon application of each local operation, similar to the155

suggestion of Coupez [28, 34].

Upon application of the cavity operator, the faces on the boundary of the

cavity, as seen from the remaining mesh (T \ C), are first cached. Next, the

boundary of the insertion operator is computed and the neighbor-relations

are updated by progressively removing the facet in the cache that exists in160

the boundary of the insertion operator. After the operator terminates, the

cache should be empty, which we strictly enforce. We note that the use of a

closed mesh, motivated by the work of Coupez & Gruau [28, 29], made our

implementation simpler, though other implementations are certainly possible.

Table 1: Choice of re-insertion vertices (with associated coordinates) for local operators. The
cavities are obtained using Eq. 2 about the j-dimensional facet f listed in the second column.

j facet, f vertex, p(x)
collapse 1 vertex v0 v1(x1)

split 1 edge e = (v0, v1) vs(xs)
edge swap 1 edge e = (v0, v1) p(xp) ∈ N (C)

smooth 0 vertex p p(x̃p)

2.3. Recovery of common mesh modification operators165

The advantage of employing the cavity-insertion framework is that, with

the appropriate selection of the cavities and re-insertion vertices, all other

mesh operators can be recovered. In fact, Figs. 2a and Figs. 3a are the sequence

of steps taken to perform an edge collapse (or vertex removal). Similarly, the

sequence of steps in Figs. 2b and Figs. 3b show two possible edge swaps. Ta-170

ble 1 gives the cavities and re-insertion vertices which recover common mesh

modification operators.

9

The coordinates for the re-insertion vertices can also be modified during

the local operation. For collapses and swaps, the vertex coordinates are not

modified and simply fixed at the coordinates of the selected re-insertion ver-175

tex. For edge splits, the re-insertion vertex inherits the coordinates of the

midpoint of the edge upon which the split occurs (xs in Table 1). The mod-

ification to the coordinates obtained with vertex smoothing is discussed in a

later section.

Now, let us study the computational cost of the local mesh operator. In180

particular, we will measure the cost per operation for each operator when

modifying a mesh in 2d, 3d and 4d. In each dimension, we vary the size of a

Kuhn-Freudenthal triangulation [35] with md vertices (modifying m). Next, we

sample the time to perform 1000 instances of each local operation on this mesh

and average the result. These timing results were obtained with a 2.8GHz Intel185

Core i7-8569U processor.

The collapse operator is the most expensive, the cost of which appears to

increase linearly with the size of the mesh (see the gray lines in Fig. 4). This

is likely due to the design of our data structures, which must update both the

topology indices and inverse topology (an element pointed to by a particu-190

lar vertex) when vertices and elements are removed. Although further work

could seek to improve this, we generally start our adaptation problems with

coarser meshes – the collapse operator is scarcely employed as the adaptation

converges and few edge collapses are needed. The cost of the insertion oper-

ator also increases linearly with the size of the mesh, though at a lower rate195

than the collapse operator (yellow lines in Fig. 4). The swap operator (blue

lines) is the most efficient and does not increase in cost with the size of the

mesh. Finally, the timing results for vertex smoothing (dashed red lines) are

also independent of the size of the mesh (they almost overlap with the cost

of the swap operator). Though the nonlinear nature of the smoothing prob-200

lem can be costly, our vertex smoothing procedure is a localized one – we do

not minimize a global objective function on the vertices, but consider a lo-

cal smoothing scheme for every vertex (see Section 2.6). Note that the same

10

1k 10k 20k 40k

triangles

1.2e-05

1.1e-04

5.8e-04
time (s)

collapse

insert

swap

smooth

1k 40k 80k 120k

tetrahedra

2.9e-05

7.6e-04

2.8e-03

time (s)

collapse

insert

swap

smooth

10k 100k 200k 400k

pentatopes

1.1e-04

5.3e-03

2.0e-02
time (s)

collapse

insert

swap

smooth

Figure 4: Timing breakdown of the topology-modifying operators (collapse, insert, swap) in 2d,
3d and 4d acting on Kuhn-Freudenthal triangulations of various sizes.

trends in computational costs are observed in 2d (triangles), 3d (tetrahedra)

and 4d (pentatopes).205

2.4. The importance of the geometry metadata

We restrict our attention to the four-dimensional computational domain

of a unit tesseract. The geometry representation is constructed by assigning

the appropriate hierarchical relations between the geometric entities: Nodes,

Edges, Faces (Squares) and Volumes (Cubes) [36]. Please note the distinction210

between a mesh vertex and a geometry Node, as well as a mesh edge and a geometry

Edge. Capital letters are used to reference entities of the geometry topology.

It is critical to check whether a proposed mesh modification operator vi-

olates the discretization of the geometry. To perform this check, we strictly

enforce that all vertices are tagged with geometry metadata. This must be the215

lowest-dimensional geometry entity. For example, a vertex on a geometry Edge

is also on Faces (and Volumes for a tesseract geometry) but the associated ge-

ometry for this vertex must be the Edge. For interior vertices, this geometry

entity is empty (∅).

A common operation in the mesh adaptation algorithm is to determine

which geometry entity a facet lies on. For a j-dimensional facet f ⊂ T , denote

the geometric entities of the vertices of f as {gv}v∈ f . Now, define the set of

parents of a geometry entity g as the set of all geometry entities higher in the

11

geometry hierarchy G:

P(g) =
{

h
∣∣ g � h, ∀h ∈ G

}
. (5)

For each vertex of f , we have the set of parents {P(gv)}v∈ f . The geometry

entity of this facet g f is computed from the lowest-dimensional member of the

intersection of all these parents. Denote all common parents as G f :

G f =
⋂
v∈ f

P(gv). (6)

The geometry entity on which this facet lies is then

g f = arg min
g∈G f

dim(g). (7)

Of course, g f can be empty even if gv 6= ∅, ∀v ∈ f . It is possible that g f

is nonempty despite f being an interior facet of the mesh. The closed mesh

is handy in treating this scenario. Every facet on a geometry entity must be

adjacent to a ghost simplex. That is,

C(f) ∈ Tg where C(f) is from Eq. 2 (8)

for facets on geometry discretizations.220

We are now equipped to check whether a mesh modification operator vio-

lates the geometry discretization. In the following, assume the full geometry

hierarchy is denoted, as a partially ordered set, by G. For an edge collapse

with edge e = (v0, v1), if ge 6= ∅, the removed vertex v0 must be higher in

G than v1. That is gv1 � gv0 . When swapping an edge e = (v0, v1) with225

a re-insertion vertex p, the geometry of the re-insertion vertex gp must be

lower than (or equal to) ge: gp � ge. Note that if dim(ge) = 1, then the swap is

rejected because we do not want to swap along a geometry Edge. For straight-

sided domains, a split along an edge e always creates a valid insertion, both

12

geometrically and topologically. However, to avoid mistakes in subsequent230

mesh operations, the created vertex must be tagged with ge, the geometry

entity of the mesh edge being split.

2.5. Achieving anisotropy using a background metric field

The use of a background metric field to produce anisotropic meshes has

been well demonstrated [37]. This metric field, prescribed discretely at the235

vertices of the input mesh (to be adapted), is used to modify the calculations

of edge length and element volume, which ultimately drive the local mesh

operator schedule. We follow the conventions proposed by the Unstructured

Grid Adaptation Working Group (UGAWG) [38] and calculate the length be-

tween vertices p and q as240

`m(p, q) ≈ `m(p)
r− 1
r log r

with r ≡
`m(p)

`m(q)
, (9)

where the length of an edge e under a constant metric m is `m(e) =
√

etme.

The volume of an element κ is [38]

vm(κ) ≈
√

det mν v(κ), with ν = arg max
ν∈κ

det mν, (10)

where v(κ) is the Euclidean volume of the element.

The goal of the anisotropic mesh adaptation algorithm is for all edges of

the metric-conforming mesh to be of unit length under the metric field, and

for the mapped volumes of all elements to be that of the unit simplex. Instead

of optimizing element volumes, we optimize element quality, similar to the

conventions of the UGAWG [38]. Similar to what is done in the literature [21,

38, 39], we relax the edge length condition such that edges satisfy a quasi-unit

length condition: `m(p, q) ∈ [
√

2/2,
√

2]. Furthermore, we target element

quality to be above 0.8, similar to Loseille’s proposition [40]. Similar to the

13

UGAWG [38], element quality is computed as

qm(κ) = βn
vm(κ)2/n

∑
e∈E(κ)

`2
m(e)

(11)

where βn is a constant that normalizes the quality of an n-simplex to be within

[0, 1]. Note that β4 = 10/
√

v∆ such that the quality of a unit equilateral pen-

tatope (under the metric field) is unit: vn =
√

n + 1/(n!
√

2n) which, for n = 4,

gives v∆ =
√

5/96. Finally, we expect the number of elements to be close to

that expected by the background (target) metric field. Ideally, the volume

of the domain in the metric space should be meshed with equilateral pen-

tatopes. The expected number of pentatopes is then the volume of the domain

in the metric space, normalized by the volume of an equilateral pentatope v∆.

This mapped volume can be computed by integrating
√

det m(x) over the

domain [39]. Therefore, the number of pentatopes is

ns ≈
1

v∆

∫
Ω

√
det m(x)dx. (12)

All three quantities: edge length, element (pentatope) quality and total el-

ement counts are indications of how well the mesh conforms to the metric

field. We report the percentage of edges within the quasi-unit range, the av-

erage quality of the elements and the total number of generated pentatopes.245

A note about computing the implied metric of the mesh. Finally, the mesh itself de-

fines a Riemannian metric, which we use to limit the change from one mesh to

the next in the adaptation sequence. The implied metric at each vertex, mI,ν,

can be computed in several ways, such as averaging the implied metrics of the

surrounding elements, using the length distribution tensor of Coupez [41], or250

by solving an optimization problem. Here, we solve an optimization problem

that penalizes (1) the deviation between the number of elements and the com-

plexity of the metric (Eq. 12), and (2) the deviation of the edge lengths from the

quasi-unit range, as measured under the implied metric [36] – for brevity, we

14

refer the interested reader to the aforementioned reference for further details.255

2.6. Scheduling the local operators

The local operator schedule is inspired by the work of Loseille [21, 40]

whereby collapses and splits are first performed to create a unit mesh. Next,

swaps and smoothing are used to optimize the quality of the mesh elements.

Motivated by the suggestion of Loseille, we ensure that no short edges are260

created during any edge split operation as this would require another pass of

the collapse operator [21]. Furthermore, edge splits are restricted if the num-

ber of produced pentatopes grows too large. In 4d, we have experimentally

observed the number of pentatopes attached to an edge can be on the order of

15-20, which means 15-20 new pentatopes are created upon the insertion of a265

single vertex. As a result, a density control factor ρ is introduced to control the

metric volume of the inserted simplices. For the inserted cavity B, we require

|B| ≈ vm(B)/v∆. That is, the number of simplices expected by the metric

volume should be approximately equal to the number of inserted pentatopes.

In practice, this condition is relaxed by allowing |B| < ρ vm(B)/v∆ so as to270

not be too restrictive with insertions. Here, we empirically set ρ =
√

2 [36].

The impact of this decision on metric conformity will be discussed using some

results in Section 3.

Collapses always target edges which are shorter than
√

2/2, however, splits

more generally target edges that are longer than some target length `t. We275

observed that the ability to parametrize splits in terms of a target length is

desirable in order to control the number of simplices generated by the adap-

tation algorithm [36]. As a result of this observation, the operator schedule

is composed of two main stages. The first stage consists of targeting edges

longer than `t = 2 in the metric space whereas the second stage targets edge280

lengths longer than `t =
√

2. Each stage visits the edge collapse and split

routines twice, which we observed to be helpful in weaving out of restrictive

topological configurations [36].

After every visit to the global collapse and split routines, edge swaps are

15

attempted in order to improve the mesh quality defined by Eq. 11. Before285

a swap is accepted, the inserted topology is checked to ensure the current

minimum and maximum edge lengths do not worsen with the application of

the swap.

After edge swaps, a local vertex smoothing procedure is performed. When

smoothing a vertex p, the set of neighboring vertices lower in the geometry

hierarchy than p are determined and used to compute the new coordinates

of p using Eq. 13 (below). This tends to drive the edge lengths (measured

under the metric field) surrounding p to unity. For vertex smoothing, the new

coordinates are computed from the local edge lengths surrounding the vertex:

x̃p = xp + ω ∑
e∈Ē(p)

(1− `m(e)) exp(−`m(e))e (13)

where Ē(p) is a selected set of the edges that surround the vertex p and e is the

unit vector along that edge. The relaxation factor is selected as ω = 0.2, similar290

to the inspiring work of Bossen and Heckbert [42]. For interior vertices, Ē is

the full set of edges connected to a vertex. However, for vertices on geometric

entities, Ē is a subset of these edges. This subset is taken as the set of all edges

such that the geometry attached to the opposite vertex q is lower than (or

equal to) the geometry of vertex p: gq � gp. Thus vertices on straight-sided295

geometry entities (such as those in the examples we consider) are smoothed

along the entity.

3. Applications I: metric-conforming mesh generation

Let us now study some four-dimensional metric-conforming problems to

demonstrate our anisotropic mesh adaptation capability.300

Tesseract Linear (TL). The first metric, inspired by the UGAWG Linear met-

ric [38], is represented analytically by

m(x) = diag
(

h−2
x , h−2

y , h−2
z , h−2

t

)
, (14)

16

R(t)

(a) Sphere expanding at constant
velocity.

r

t

t = 0

t = 1

r = R0

r = R f

α
|

(b) Sphere expanding at constant
velocity.

Figure 5: Illustration of the Tesseract Wave case and expected refinement.

where hx = hy = hz = hmax and ht = h0 + 2(hmax − h0)|t − 0.5|, with h0 =

0.01hmax. Meshes within a unit tesseract are generated for the two cases where

hmax = [0.25, 0.125] so as to assess the performance at both low and moderate

mesh sizes. Here, we expect to see six of the eight bounding hypercubes (non-

constant t hyperplanes) to show refinement in the t direction. The constant t305

hyperplanes should exhibit uniform meshes. This case will be referred to as

the Tesseract Linear (TL) case and will be further classified as the Tesseract

Linear 1 (hmax = 0.25) and Tesseract Linear 2 (hmax = 0.125). Applying Eq. 12

suggests the Linear 1 case expects 51k pentatopes whereas the Linear 2 case

expects 818k pentatopes.310

Tesseract Wave (TW). The second metric field is modeled after an expanding

spherical wave in 3d (see Fig. 5a). Consider a spherical wave of radius R0 = 0.4

centered about the origin at time t = 0. If the wave expands at a constant

velocity vp to a radius R f = 0.8 at time t = 1, then the expanding sphere

traces the geometry of a hypercone in 4d.315

Fig. 5b exhibits the behavior of the expanding (d− 1)-sphere in a spherical-

temporal coordinate system. Note that a slice of the (d + 1)-dimensional cone

with a hyperplane with non-constant temporal component yields a d-cone.

Here, this appears as a line but rotational symmetry implies the hypercone

sliced by a hyperplane with non-constant temporal component yields a three-320

dimensional cone. Hence, when extracting the eight cubes bounding the unit

17

tesseract, we expect to see three-dimensional cones along hyperplanes with a

varying temporal component.

The metric used to capture the propagation of this wave is

m(x) = Q diag
(

h−2
r , h−2

θ , h−2
φ , h−2

t

)
Qt. (15)

The eigenvectors Q are readily derived by rotating the spherical coordinate

unit vectors by an angle α corresponding to the angle made by the velocity

vector with the temporal axis. Only the radial unit vector is affected by the

rotation which results in a basis given by

Q =


sin α cos φ sin θ cos φ cos θ − sin φ cos α cos φ sin θ

sin α sin φ sin θ cos θ sin φ cos φ cos α sin φ sin θ

sin α cos θ − sin θ 0 cos α cos θ

− cos α 0 0 sin α

 . (16)

The spacings in the tangential directions are

hθ , hφ =

 h1, |r− R(t)|> δ,

(h1 − h2)|r− R(t)|/δ + h2, |r− R(t)|≤ δ,
(17)

with R(t) = R0 + (R f − R0)t is the position of the spherical wave with time.

The spacing in the radial direction is hr = h0 + 2(h1 − h0)|r − R(t)| and the325

spacing in the temporal direction is ht = 0.5. Note the use of spherical coordi-

nates, r =
√

x2 + y2 + z2, θ = arccos(z/r) and φ = arctan(y, x). The rotation

angle is equal to α = arctan(t f − t0, R f − R0). The remaining parameters are

h0 = 0.0025, h1 = 0.125, h2 = 0.05 and δ = 0.1. We were unable to deter-

mine the analytic number of pentatopes for this case (i.e. integrating Eq. 12),330

however, using numerical quadrature on the resulting meshes provides an

estimate of 275k pentatopes.

Results. We produce metric-conforming meshes using the procedure of Al-

gorithm 1, starting with a Kuhn-Freudenthal triangulation containing three

18

generateMetricConformingMesh

input: M = (V , T), mt
output: M

1 for i = 1 to niter
2 mI ← impliedMetric(M)� calculate implied metric of mesh [36]
3 m← mt(V)� evaluate target metric at vertices
4 for ν ∈ V
5 sν ← log

(
m−1/2

I,ν mνm−1/2
I,ν

)
6 sν ← limit(sν) by directly limiting entries to be ≤ 2 log 2
7 mν ← exp

(
m−1/2

I,ν sνm−1/2
I,ν

)
8 M← adaptMesh(M, m) � call mesh adaptation tool

Algorithm 1: Target metric assessment procedure. The analytic metric mt is first evaluated at the
current mesh vertices (Line 3) and then limited in Line 6 according to the step from the implied
metric of the mesh to the target (Line 5). A new mesh is then generated on Line 8 from which
metric conformity under the analytic metric can be assessed.

vertices in each of the four coordinate directions. We perform twenty itera-335

tions of (1) computing the implied metric field of the current mesh and (2)

prescribing the discrete metric (from the analytic descriptions in Eqs. 14 and

15) so that the change in edge lengths from the current mesh is limited by a

factor of two – see Line 6. Specifically, Line 5 computes the step matrix from

the implied metric of the mesh at a vertex ν to the target metric evaluated at340

the coordinates of that vertex, using the log-Euclidean framework [43]. The

entries of the step matrix are directly limited on Line 6 so that their magni-

tude is not larger than 2 log 2, as suggested by Yano [44]. The metric at each

vertex that is passed to our mesh adaptation algorithm is then computed as

the tensor that is a step sv from the implied metric at that vertex (Line 7), in345

the log-Euclidean framework – we elaborate upon this in Section 4.1.

Meshes at the x = 0 and x = 1 hyperplanes (cubes) for the Tesseract Linear

cases are provided in Fig. 7 (Linear 1) and Fig. 8 (Linear 2). For clarity, all eight

meshes bounding the tesseract for the Tesseract Wave case are shown in Fig. 9

(in later sections, only a subset of these eight bounding meshes will shown350

19

0.2 0.5 1 1.88 3.08

length

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

97 %

89 %

% edges

Linear 1 (h)

Linear 2 (h/2)

Wave

Figure 6: Metric conformity statistics obtained from Algorithm 1 for the four-dimensional bench-
mark cases. Shaded regions outline the target regions for the edge lengths and element qualities.

Table 2: Metric-conformity statistics for the 4d benchmark cases with (ρ) and without (�Aρ) the
density control factor.

`min `max `avg % `unit qmin qavg % qunit npentatope

Linear 1 (ρ) 0.52 1.82 1.10 96.8% 0.30 0.81 57.8% 55k
(�Aρ) 0.47 1.81 1.08 97.4% 0.17 0.80 55.2% 60k

Linear 2 (ρ) 0.48 1.88 1.11 97.3% 0.07 0.83 69.9% 816k
(�Aρ) 0.38 1.85 1.08 98.0% 0.02 0.83 67.3% 914k

Wave (ρ) 0.24 3.08 1.12 88.9% 0.07 0.72 26.5% 347k
(�Aρ) 0.28 2.58 1.08 92.5% 0.03 0.72 28.7% 394k

for brevity). Observe that the expected refinement of the cones are observed

along hyperplanes with non-constant temporal component. At t = 0 and

t = 1, the sphere at the initial and final radii are respectively observed. The

edge length and quality histograms of Fig. 6 demonstrate an acceptable level

of metric conformity for all cases. Specifically, the number of edges within355

the quasi-unit range is very good: approximately 97% for the Linear cases

and 89% for the Wave case. Element quality is best for the Linear 2 case and

poorest for the Wave case.

These results compare well with metric conformity statistics of existing 3d

mesh adaptation technologies. In fact, we apply our same algorithm to the360

benchmarks proposed by the UGAWG [38] and achieve comparable results to

those presented in the paper. We summarize the results of these benchmarks –

20

Table 3: Metric-conformity statistics for the 3d UGAWG benchmark cases.

`min `max `avg % `unit qmin qavg % qunit ntetrahedra

CL 0.57 1.50 1.06 99.9% 0.33 0.90 94.2% 39k
CCL 0.64 1.60 1.06 99.8% 0.32 0.90 93.9% 31k

CCP1 0.13 5.92 1.10 92.1% 0.00 0.72 44.6% 24k
CCP2 0.56 1.75 1.08 98.1% 0.28 0.87 83.9% 35k

Cube-Linear (CL), Cube-Cylinder-Linear (CCL), Cube-Cylinder-Polar1 (CCP1)

and Cube-Cylinder-Polar2 (CCP2) – in Table 3. Applying Eq. 12 reveals that

the CL case expects 39k tetrahedra, the CCL case expects 31k, the CCP1 case365

expects 21k and the CCP2 case expects 36k tetrahedra. Our algorithm pro-

duces meshes with a minimum of 92% of the edges in the quasi-unit range

and an average element quality of at least 0.72, though the results for the CL,

CCL and CCP2 cases are much better.

When the density control factor (ρ) is employed, the number of pentatopes370

overshoots the expected number of 51k by 8% for the Linear 1 case and un-

dershoots the expected number of 818k by 0.2% for the Linear 2 case (Table 2).

The overshoot in number of pentatopes is roughly 26% for the difficult Tesser-

act Wave case. We also provide the metric conformity results when the density

control factor is not employed (�Aρ) in which the overshoot is much larger, and375

metric conformity (in terms of % of edges in the quasi-unit range, and aver-

age element quality) is slightly improved. We note that the use of this factor

is empirical, however, the ability of the mesh generator to closely match the

target element counts is important for our adaptation scheme in the following

sections, which optimizes the mesh for a target DOF count. We, therefore,380

employ it in for the remaining results in this paper.

We also studied the valency statistics of the produced meshes. The average

number of pentatopes surrounding an interior vertex is 111, 116 and 118 for

the Linear 1, Linear 2 and Wave cases, respectively. The average number of

pentatopes surrounding an edge is 12 (Linear 1), 14 (Linear 2) and 13 (Wave).385

21

Z
Y

T

(a) x = 0

Z

Y
X

(b) t = 0

Figure 7: Meshes generated by Algorithm 1 for the Tesseract Linear 1 case show the expected
refinement on a hyperplane of non-constant t (left) but a uniform mesh along a hyperplane of
constant t (right).

Z
Y

T

(a) x = 0

Y
X

Z

(b) t = 0

Figure 8: Meshes generated by Algorithm 1 for the Tesseract Linear 2 case show the expected
refinement on a hyperplane of non-constant t (left) but a uniform mesh along a hyperplane of
constant t (right).

22

T Z

Y

(a) x = 0

T Z

Y

(b) x = 1

T Z

X

(c) y = 0

T Z

X

(d) y = 1

T Y

X

(e) z = 0

T Y

X

(f) z = 1

Z X

Y

(g) t = 0

Z

Y

X

(h) t = 1

Figure 9: Meshes of the eight bounding cubes generated by Algorithm 1 for the Tesseract Wave
case show the projection of the hypercone onto hyperplanes with non-constant temporal compo-
nent (a-f) and spheres on hyperplanes with constant temporal component (g and h).

23

4. Applications II: optimal approximant of a scalar function

We now turn our attention to finding the optimal mesh to represent a func-

tion of four variables using high-order discontinuous Galerkin finite element

discretizations. Instead of directly optimizing the mesh, we optimize the met-

ric field and pass this optimal metric to our mesh adaptation tool. That is,390

we consider a continuous relaxation of the discrete mesh optimization prob-

lem, as in the work of Yano [44, 45] and Loseille [39, 46, 47, 48]. A review

of this approach is provided by Alauzet and Loseille [37]. Previous methods

have sought to optimize the mesh by controlling local bounds on the interpo-

lation error for linear finite elements [49, 50, 51]. Other work includes that of395

Coupez, in which the length distribution tensor is used to control an edge-

based interpolation error estimate [41, 52]. Coulaud and Loseille extend the

continuous mesh framework to high-order interpolations [53]. Park et al. re-

cently compare the use of the multiscale metric [54, 55, 56] which controls the

`p norm of the interpolation error of a scalar solution field with output-based400

methods methods [44, 45, 57] that employ the continuous mesh framework of

Loseille and Alauzet [39, 48].

In the continuous mesh framework, the goal of the adaptation algorithm

is to find the optimal metric (m) to minimize the `2 approximation error (E)

subject to a computational cost constraint ct:

m∗ = arg min
m

E(m), such that c(m) ≤ ct (18)

where E is the sum of the error over each element of the computational do-

main Ω:

E =

√∫
Ω

(
u− uh,p

)2
dx =

√
∑

κ∈M
η(κ) =

√
∑

κ∈M

∫
κ

(
u− uh,p

)2
dx (19)

where u is a prescribed analytic function and uh,p ∈ Vh,p, a discontinuous

24

finite element space

Vh,p =
{

v ∈ `2(Ω) : vh,p ◦ ϕq(κ) ∈ P p(κ0), ∀ κ ∈ M
}

, (20)

where ϕq(κ) is the q-th order diffeomorphic mapping from physical element κ

to master element κ0 and P p(κ0) denotes the complete p-th order polynomial

space on the reference element κ0. We study straight-sided pentatopes in this405

work, so q = 1.

The discrete solution uh,p is obtained by minimizing the square of the `2

projection error, i.e.

uh,p = arg inf
vh,p∈Vh,p

∫
Ω

(u− vh,p)
2 dx. (21)

For discontinuous Galerkin discretizations of order p, the computational

cost can be computed by accumulating the volume mapped by the metric field

over each element – recall Eq. 10:

c(m) = cp ∑
κ∈M

vm(κ) = cp ∑
κ∈M

∫
κ

√
det m(x)dx, (22)

where cp = (p + 1)(p + 2)(p + 3)(p + 4)/24 for pentatopal meshes, which

represents the number of basis functions, and hence DOF, associated with

each discontinuous element.

4.1. Mesh optimization via error sampling and synthesis410

Our mesh adaptation algorithm is an extension of the Mesh Optimization

via Error Sampling and Synthesis (MOESS) algorithm of Yano [44] to four

dimensions combined with the metric field optimization of Kudo [58]. The

localization of the elemental error available using the discontinuous Galerkin

finite element discretization enables the construction of local (elemental) error415

models which relate the error to the implied metric of the sampled configura-

tions.

25

m0
m1 m2

m3

Figure 10: Sketch of the error-metric sampling procedure used in MOESS (in 2d). For each edge
split, the solution (and error) is recalculated in the blue triangles but frozen in the red triangles.
The black line represents the implied metric of the split configuration.

Each element, κ0, can then be split and the error over each child element

can be recalculated. Our local sampling method for discontinuous Galerkin

discretizations consists of extracting the parent simplex along with its imme-420

diate neighbors (opposite each facet). One by one, each edge of the parent

simplex is then divided at its midpoint and the solution is recalculated within

the local split mesh. During this solution process, Dirichlet boundary condi-

tions are applied to the DOF of the neighboring simplices such that only the

solution of the split elements of the original parent are recomputed. The edge425

split configurations used for n = 2d are shown in Fig. 10. In 4d, ten edge splits

are used (for each edge of a pentatope) which is needed to fully determine the

error model in terms of the ten unique metric tensor entries.

The implied metric associated with each split configuration is taken as the

log-Euclidean mean [43] of the implied metrics of the split elements and the430

error introduced by the split elements is summed to complete the set of ns

metric-error pairs: {mi, ηκi}.
The metric-error pairs are then used to construct a model of the error as

a function of the metric field. This model is constructed in terms of the step

matrix, s, which represents the difference between two metric tensors. In the

context of the discrete set of sampled data, these tensors are computed from

mκi and mκ0 as [43]

sκi = log
(

m−1/2
κ0

mκi m
−1/2
κ0

)
, i = 1, . . . , ns. (23)

26

A linear model is then constructed from the ns metric-error samples,

fκ(s) ≡ log (η(s)/η0) = rκ : s, (24)

where rκ is referred to as the rate matrix. A linear regression of the sampled

data is used to determine rκ.

Over an element κ, the resulting local error model can finally be written in

terms of the average element step matrix sκ as

ηκ(sκ) = ηκ,0 exp(tr(rκsκ)) +
p
n

||s̃κ||2F + ∑
e∈E(κ)

||s̃e1 − s̃e2 ||2F

 (25)

where s̃(·) denotes the trace-free portion of the step matrix and ||·||F is the435

Frobenius norm. The Frobenius norm penalties in Eq. 25 are introduced to

control the trace-free portion of the step matrix.

In general, we optimize the vertex-valued step matrices, therefore, the av-

erage step matrix over the element sκ is computed from

sκ =
1

|V(κ)| ∑
ν∈V(κ)

sν,

where V(κ) = n + 1 (n = 4 in 4d) is the number of vertices in a simplicial

element κ. The error in the mesh is then the sum of the local element contri-

butions. Eq. 18 is then solved using the elemental error models of Eq. 25 with440

the optimization procedure of Kudo [58].

The optimized metric is then passed to our metric-conforming mesh adap-

tation tool. An outline of the adaptation procedure is given in Algorithm 2.

The initial mesh is a Kuhn-Freudenthal triangulation with three vertices in

each of the four coordinate directions. One hundred adaptation iterations are445

used to ensure the optimal mesh is achieved, though only twenty iterations

are usually needed to reach this mesh (for the cases studied here).

27

adaptError

input: M0, ct, p, u, maxIter
output: M∗

1
2 M←M0
3 for iter = 1,. . . , maxIter
4 uh,p ← project u onto solution space (order p) on current meshM
5 m← moess(M, uh,p, ct, p)
6 M← adaptMesh(M, m)� call mesh adaptation tool
7 M∗ ←M

Algorithm 2: Adaptation algorithm to compute the optimal `2 approximant of a 4d function u
with a target computational cost ct, polynomial order p of the discrete solution. The algorithm
starts from an initial meshM0 and performs maxIter adaptation iterations to produce the optimal
meshM∗.

4.2. Boundary layer

The first function we consider is an extension of the regularized boundary

layer studied by Yano [44] to four dimensions:

u(x, y, z, t) = exp(−x/ε) +
βy

(p + 1)!
yp+1 +

βz

(p + 1)!
zp+1 +

βt

(p + 1)!
tp+1. (26)

The first term causes a strong gradation in the x direction whereas the re-

maining three regularization terms ensure the aspect ratios in the y, z and t450

directions remain bounded.

The mesh which best approximates the function in Eq. 26 has an optimal

mesh grading (hx) perpendicular to the wall (x = 0) with [44]

hx = hx,0 exp(khx x), khx =
2p + 5

ε(p + 1)(2p + 6)
, (27)

where hx,0 is a constant determined by the computational cost constraint. The

aspect ratio distributions, ai, in the three remaining directions are

ai = ai,0 exp(kai x), ai,0 =
1

εβ
1

p+1
i

, kai = −
1

ε(p + 1)
, i = y, z, t. (28)

28

Here, ε = 0.01, βy = 2p+1, βz = 4p+1 and βt = 6p+1.

We restrict our attention to the discontinuous Galerkin (dG) solution spaces

and study linear (p = 1) and quadratic (p = 2) polynomial orders. To verify

the optimality of the produced meshes, consider the mesh size and aspect455

ratios obtained near the x = 0 wall. Eqs. 27 and 28 suggest the mesh size

and aspect ratios should be linear in x versus log(hx) and x versus log(ai)

(i = y, z, t). Near the wall, the mesh sizes are computed directly from the diag-

onal entries of the implied metric of each pentatope. That is, hi(κ) ≈ (mκ)
−1/2
i,i

(i = 1, 2, 3, 4, representing x, y, z and t directions, respectively). The as-460

pect ratios are then ai = hi/hx (i = y, z, t). For both linear and quadratic

polynomial bases, the distributions of the mesh size and aspect ratios for the

512k-optimized meshes are shown in Fig. 11. A linear regression of the size

and aspect ratios in x − log(hx) and x − log(ai) (i = y, z, t) spaces shows the

distributions are well-aligned with the analytic mesh distributions (shown in465

dashed). Table 4 tabulates the full set of regression coefficients for all target

DOF with both p = 1 and p = 2 discretizations. For p = 1, better alignment

with the analytic values for both the wall aspect ratios and gradings away

from the wall is obtained as the number of DOF is increased. For p = 2,

the wall aspect ratios are all fairly good and an improvement is seen in the470

gradings as the number of target DOF is increased.

The meshes at t = 0 obtained at 512k for both p = 1 and p = 2 polynomial

orders are shown in Fig. 12. The meshes at constant x-hyperplanes are omitted

from this text since they exhibit the least anisotropy – there is little gradation

in the solution in the y, z or t directions. All other bounding cubes with a475

variation in x effectively resolve the boundary layer with anisotropic simplices

near the x = 0 boundary.

The `2 error in the solution and approximate mesh size, h ≈ 4
√

DOF, from

the last five adaptation iterations are plotted in the circles of Fig. 13 and these

values from the last two target DOF requests are fit in log h − log E (E here480

being the exact `2 error) space to estimate the rate of convergence. The bound-

ary layer function of Eq. 26 is four-dimensional and we expect an asymptotic

29

0 0.05

x

10
-4

10
-3

10
-2

10
-1

h
x
 = 0.0076 exp(33.74 x) (moess)

h
x

*
 = 0.0053 exp(43.75 x) (optimal)

h
x

(a) x versus h

0 0.05

x

10
0

10
1

10
2

a
y
 = 33.76 exp(-38.05 x) (moess)

a
y

*
 = 50.00 exp(-50.00 x) (optimal)

a
y

(b) x versus ary

0 0.05

x

10
0

10
1

10
2

10
3

a
z
 = 18.18 exp(-38.92 x) (moess)

a
z

*
 = 25.00 exp(-50.00 x) (optimal)

a
z

(c) x versus arz

0 0.05

x

10
0

10
1

10
2

a
t
 = 12.47 exp(-39.25 x) (moess)

a
t

*
 = 16.67 exp(-50.00 x) (optimal)

a
t

(d) x versus art

Figure 11: Mesh size and aspect ratio distributions for the boundary layer error control case
(p = 1 and p = 2) are in agreement with analytic distributions. Only the distributions for
the 512k-optimized meshes with δ = 0.01 are shown. The remaining distribution statistics are
tabulated in Table 4.

30

Table 4: Mesh size and aspect ratio distributions for the boundary layer error control case (p = 1
and p = 2) are in agreement with analytic distributions (here, δ = 0.01).

p = 1 hx,0 h∗x,0 khx ay,0 kay az,0 kaz at,0 kat

Analytic h∗x,0 - 43.75 50.00 -50.00 25.00 -50.00 16.67 -50.00

64k 0.0155 0.0090 25.14 25.52 -26.57 14.32 -26.84 9.59 -26.11

128k 0.0121 0.0075 28.39 29.46 -31.14 16.02 -31.79 10.75 -31.44

256k 0.0095 0.0063 31.29 32.15 -35.22 17.09 -35.92 11.76 -35.58

512k 0.0076 0.0053 33.74 33.76 -38.05 18.18 -38.92 12.47 -39.25

p = 2 hx,0 h∗x,0 khx ay,0 kay az,0 kaz at,0 kat

Analytic h∗x,0 - 30.00 50.00 -33.33 25.00 -33.33 16.67 -33.33

64k 0.0146 0.0125 25.46 38.06 -24.69 22.41 -25.96 15.39 -26.60

128k 0.0119 0.0105 24.56 42.92 -28.12 21.51 -27.69 14.55 -28.50

256k 0.0100 0.0088 27.36 40.45 -29.80 22.11 -30.55 14.64 -30.14

512k 0.0081 0.0074 28.00 44.13 -31.04 22.06 -30.68 15.22 -31.74

Y

Z

X

(a) p = 1

Y

Z

X

(b) p = 2

Figure 12: Meshes along the t = 0 hyperplane generated by Algorithm 2 for the boundary layer
case optimized for p = 1 and p = 2 512k-DOF solutions (δ = 0.01).

31

0.04 0.05 0.06

10
-3

10
-2

 = 0.01

error ~ h
2.46

 = 0.1

error ~ h
2.17

 = 0.01

error ~ h
3.75

 = 0.1

error ~ h
3.23

p = 1

p = 2

Figure 13: Convergence of the `2 error in the boundary layer solution for both p = 1 and p = 2
discretizations as the mesh is refined with two boundary layer thicknesses: δ = 0.1 (blue, circles)
and δ = 0.01 (red, squares).

convergence rate of approximately hp+1 [44, 59, 60]. This is certainly observed

in the rates obtained for both p = 1 and p = 2 as seen in Fig. 13 though the

rates are slightly higher than expected. This may be due to the fact that the485

meshes are still in the pre-asymptotic range and would likely approach rates

of E ∼ hp+1 should finer mesh resolutions be studied. With δ = 0.1, the con-

vergence rates are closer to the theoretical asymptotic ones (see the blue lines

in Fig. 13).

4.3. Expanding spherical wave490

Now, consider a function modeling the expansion of a spherical wave,

similar to the Tesseract Wave case of the previous section:

u(x, t) = k0 exp(−αt) exp
(
−k1(r(t)− ||x||)2

)
, x ∈ R3, t ∈ [0, 1] (29)

with r(t) = r0 + vst, α = 1, k0 = 1, k1 = 200, vs = 0.7, r0 = 0.4. The

strength of the wave, initially k0, decays exponentially in time at a rate of α.

The parameter k1 controls the width of wave strength δ about the increasing

radius r(t). In particular, since Eq. 29 is a normal distribution; roughly 99.7%

of u will lie within three standard deviations of the nominal wave radius r(t).

32

0.02 0.04 0.06
10

-5

10
-4

10
-3

10
-2

p = 1

error ~ h
3.15

p = 2

error ~ h
4.61

p = 3

error ~ h
6.00

Figure 14: Convergence of the `2 error in the spherical wave solution for p = 1, p = 2 and p = 3
discretizations as the mesh is refined.

Table 5: Metric conformity at final adaptation iteration for 1024k meshes adapted to the spherical
wave solution.

`min `max `avg % `unit qmin qavg % qunit npentatope ndof
p = 1 0.43 2.21 1.11 94.0% 0.11 0.75 35.0% 237k 1.186M
p = 2 0.46 1.96 1.10 95.7% 0.23 0.76 38.5% 78k 1.170M
p = 3 0.47 1.98 1.10 95.1% 0.20 0.75 84.8% 35k 1.239M

This thickness can be approximated as

δ ≈ 3σ =
3√
2k1

. (30)

For this problem, δ ≈ 0.15 and a total of 2δ should be visibly refined about

the expanding sphere by the adaptation algorithm.

The p = 1, p = 2 and p = 3 optimized meshes along t = 0, t = 1, and

x = 0 and x = 1 hyperplanes (cubes) obtained for the target DOF request of

1024k are shown in Fig. 15. The expected three-dimensional cones are seen495

along hyperplanes with non-constant temporal component whereas the initial

sphere (with radius r0 = 0.4) and final sphere (with radius r f = 1.1) are

correctly obtained at constant t hyperplanes. Note that the expected width

(2δ ≈ 0.3) of the solution around the expanding wave is seen since the width

33

64k 128k 256k 512k 1024k
p = 1 1.10e+03 5.30e+02 2.25e+03 5.68e+03 3.67e+03

p = 2 5.02e+01 1.71e+02 2.50e+02 3.11e+02 9.54e+02

p = 3 4.65e+01 5.26e+01 1.57e+02 1.80e+02 4.11e+02

Table 6: Maximum aspect ratios for the optimized meshes (at various DOF) with p = 1, p = 2
and p = 3 discretizations for the spherical wave error control case.

of the mesh resolution is approximately one third in each spatial direction.500

Furthermore, the stretching in the direction of the wave is evident; on average,

two elements are needed in the temporal direction.

The metric conformity statistics for the meshes optimized at 1024k DOF

are provided in Table 5. At least 94% of the edges are within the quasi-unit

range, which is very good. The number of pentatopes of quality greater than505

0.8 is low for the cases with larger meshes and higher anisotropy (see the

p = 1 and p = 2 results).

For the spherical wave case, the fitted convergence rates are even more

accelerated than hp+1 which may be due to the fact that the function is effec-

tively two-dimensional in an r − t coordinate system. Thus the convergence510

rate should approach h2(p+1), though, again the results obtained from the

simulations exhibit pre-asymptotic behavior.

The maximum aspect ratios for each mesh (64k-1024k) optimized for p = 1,

p = 2 and p = 3 discretizations are tabulated in Table 6 which effectively

demonstrate a maximum aspect ratio of over 103 : 1 with our algorithm.515

5. Perspectives

This paper presented the first four-dimensional anisotropic mesh adap-

tation capability. Our mesh adaptation algorithm builds upon a dimension-

independent cavity framework for performing local mesh modifications.

Anisotropy was achieved through the use of a background metric field.520

First, anisotropic four-dimensional meshes were obtained by prescribing

an analytic metric field on a background mesh. We introduced analytic metric

fields consisting of the Tesseract Linear (coarse and fine) and Tesseract Wave

34

t = 0

Z X

Y

(a) p = 1

Y

Z X

(b) p = 2

Z

Y

X

(c) p = 3

t = 1

Z

Y

X

(d) p = 1

Z

Y

X

(e) p = 2

Z

Y

X

(f) p = 3

x = 0

T Z

Y

(g) p = 1

T Z

Y

(h) p = 2

T Z

Y

(i) p = 3

x = 1

T

Y

Z

(j) p = 1

T Z

Y

(k) p = 2

T Z

Y

(l) p = 3

Figure 15: Meshes generated by Algorithm 2 for the spherical wave case optimized for p = 1,
p = 2 and p = 3 1024k-DOF solutions. The initial and final spheres are observed at t = 0 and
t = 1 respectively. The expected projection of a hypercone onto a plane with non-constant t is
also observed at x = 0 and x = 1.

35

cases. The resulting edge lengths, pentatope qualities and total pentatope

counts indicate that good metric conformity is achieved with our algorithm:525

roughly 90% of the edges are in the quasi-unit range, average element qual-

ity as at least 0.7 and the pentatope counts are within 10% of the expected

numbers. Furthermore, our algorithm performs well on 3d benchmark cases

proposed by the Unstructured Grid Adaptation Working Group.

Next, we produced meshes that adapt to the exact `2 error between a pre-530

scribed function and its discrete representation in a polynomial basis. The

correct mesh size and aspect ratio distributions were obtained for a function

with a rapid variation near one of the boundaries of the domain. Similarly,

the `2 error control of a four-dimensional function simulating the expansion

of a spherical wave was effective in resolving the strength of the wave as it535

propagated in time. In particular, the meshes exhibited a significant amount

of clustering within 99.7% of the wave radius and metric conformity was very

good for this case. The convergence of the `2 error in the solution with de-

creasing mesh size approached the expected theoretical asymptotic rate.

The adaptation algorithm is currently restricted to a serial implementation,540

the performance of which is acceptable for the problem sizes studied in this

work. One iteration of the mesh adaptation algorithm takes approximately

15− 20 minutes for the larger four-dimensional meshes with 800− 900k pen-

tatopes. Future work consists of parallelizing the mesh adaptation compo-

nents using both shared- and distributed-memory approaches.545

Furthermore, we only studied discontinuous Galerkin finite element dis-

cretizations, which suffers from a high per-element DOF cost. It would be

worthwhile to study alternative finite element discretizations, such as contin-

uous ones to reduce the computational cost of the numerical simulation. This

is particularly true when moving towards the solution of partial differential550

equations, such as the Navier-Stokes equations.

36

Acknowledgements

This work was funded by the CAPS project: AFRL Contract FA8050-14-

C-2472: CAPS: Computational Aircraft Prototype Syntheses with Dean Bryson

as technical monitor. The authors would also like to thank Dr. Marshall555

Galbraith for his help developing the software in this work.

References

[1] M. Yano, J. M. Modisette, D. L. Darmofal, The Importance of Mesh Adap-

tation for Higher-Order Discretizations of Aerodynamic Flows, in: 20th

AIAA Computational Fluid Dynamics Conference, 3852, 2011.560

[2] J. Slotnick, A. Khodadoust, J. Alonso, D. L. Darmofal, W. Gropp, E. Lurie,

D. J. Mavriplis, CFD Vision 2030 Study: A Path to Revolutionary Com-

putational Aerosciences, Technical Report NASA/CR-2014-218178, 2014.

[3] J. T. Oden, A General Theory of Finite Elements II. Applications, Inter-

national Journal for Numerical Methods in Engineering 1 (1969) 247–259.565

[4] J. Argyris, D. Scharpf, Finite Elements in Time and Space, Nuclear Engi-

neering and Design 10 (1969) 456 – 464.

[5] I. Fried, Finite-Element Analysis of Time-Dependent Phenomena, AIAA

Journal 7 (1969) 1170 – 1173.

[6] M. Behr, Simplex Space-Time Meshes in Finite Element Simulations, In-570

ternational Journal for Numerical Methods in Fluids 57 (2008) 1421–1434.

[7] A. Üngör, A. Sheffer, Tent-Pitcher: A Meshing Algorithm for Space-Time

Discontinuous Galerkin Methods, in: Proceedings of the 9th Interna-

tional Meshing Roundtable, 2000, pp. 111–122.

[8] J. Erickson, D. Guoy, J. Sullivan, A. Üngör, Building Space-Time Meshes575

over Arbitrary Spatial Domains, Engineering with Computers 20 (2005)

342–353.

37

[9] A. D. Mont, Adaptive Unstructured Spacetime Meshing for Four-

Dimensional Spacetime Discontinuous Galerkin Finite Element Methods,

Master’s thesis, University of Illinois at Urbana-Champaign, 2011.580

[10] S. Thite, Adaptive Spacetime Meshing for Discontinuous Galerkin Meth-

ods, Computational Geometry 42 (2007) 20 – 44.

[11] K. J. Fidkowski, Y. Luo, Output-Based Space-Time Mesh Adaptation for

the Compressible Navier-Stokes Equations, Journal of Computational

Physics 230 (2011) 5753 – 5773.585

[12] K. J. Fidkowski, Output-Based Space-Time Mesh Optimization for Un-

steady Flows Using Continuous-in-Time Adjoints, Journal of Computa-

tional Physics 341 (2017) 258–277.

[13] W. Bangerth, R. Rannacher, Finite Element Approximation of the Acous-

tic Wave Equation: Error Control and Mesh Adaptation, East-West Jour-590

nal of Numerical Mathematics 7 (1999) 263–282.

[14] W. Bangerth, M. Geiger, R. Rannacher, Adaptive Galerkin Finite Element

Methods for the Wave Equation, Computational Methods in Applied

Mathematics 10 (2010) 3–48.

[15] R. Hartmann, Adaptive FE Methods for Conservation Equations, in:595

H. Freistühler, G. Warnecke (Eds.), Hyperbolic Problems: Theory, Nu-

merics, Applications, volume 141 of International Series of Numerical Math-

ematics, 2001, pp. 495–503.

[16] S. Jayasinghe, An Adaptive Space-Time Discontinuous Galerkin Method

for Reservoir Flows, PhD thesis, Massachusetts Institute of Technology,600

2018.

[17] S. Jayasinghe, D. L. Darmofal, N. K. Burgess, M. C. Galbraith, S. R. All-

maras, A Space-Time Adaptive Method for Reservoir Flows: Formulation

and One-Dimensional Application, Computational Geosciences 22 (2018)

107–123.605

38

[18] P. Foteinos, N. Chrisochoides, 4D Space-Time Delaunay Meshing for

Medical Images, in: Proceedings of the 22nd International Meshing

Roundtable, 2014.

[19] G. Belda-Ferrín, A. Gargallo-Peiró, X. Roca, Local Bisection for

Conformal Refinement of Unstructured 4D Simplicial Meshes, in:610

X. Roca, A. Loseille (Eds.), Proceedings of the 27th International Mesh-

ing Roundtable, volume 127 of Lecture Notes in Computational Science and

Engineering, Springer, 2019, pp. 229–247.

[20] P. C. Caplan, R. Haimes, D. L. Darmofal, M. C. Galbraith, Anisotropic

Geometry-Conforming d-Simplicial Meshing via Isometric Embeddings,615

Procedia Engineering 203 (2017) 141–153. 26th International Meshing

Roundtable.

[21] A. Loseille, F. Alauzet, V. Menier, Unique Cavity-Based Operator

and Hierarchical Domain Partitioning for Fast Parallel Generation of

Anisotropic Meshes, Computer-Aided Design 85 (2017) 53 – 67.620

[22] T. Michal, J. Krakos, Anisotropic Mesh Adaptation through Edge Prim-

itive Operations, in: 50th AIAA Aerospace Sciences Meeting including

the New Horizons Forum and Aerospace Exposition, 159, 2012.

[23] M. A. Park, D. L. Darmofal, Parallel Anisotropic Tetrahedral Adaptation,

in: 46th AIAA Aerospace Sciences Meeting and Exhibit, 917, 2008.625

[24] P. George, H. Borouchaki, P. Laug, An Efficient Algorithm for 3D Adap-

tive Meshing, Advances in Engineering Software 33 (2002) 377 – 387.

[25] G. Rokos, G. J. Gorman, J. Southern, P. H. J. Kelly, A Thread-Parallel

Algorithm for Anisotropic Mesh Adaptation, Technical Report, 2013.

arXiv:arXiv:1308.2480.630

[26] D. A. Ibanez, Conformal Mesh Adaptation on Heterogeneous Supercom-

puters, PhD thesis, Rensselaer Polytechnic Institute, 2016.

39

http://arxiv.org/abs/arXiv:1308.2480

[27] C. Dobrzynski, P. Frey, Anisotropic Delaunay Mesh Adaptation for Un-

steady Simulations, in: Proceedings of the 17th International Meshing

Roundtable, 2008, pp. 177–194.635

[28] T. Coupez, Génération de Maillage et Adaptation de Maillage par Opti-

misation Locale, Revue Européenne des Éléments Finis 9 (2000) 403–423.

[29] C. Gruau, Metric Generation for Anisotropic Mesh Adaptation with Nu-

merical Applications to Material Forming Simulation, PhD thesis, École

Nationale Supérieure des Mines de Paris, 2005.640

[30] P. Tremblay, 2-D, 3-D and 4-D Anisotropic Mesh Adaptation for the Time-

Continuous Space-Time Finite Element Method with Applications to the

Incompressible Navier-Stokes Equations, PhD thesis, University of Ot-

tawa, 2007.

[31] C. Gruau, T. Coupez, 3D Tetrahedral, Unstructured and Anisotropic645

Mesh Generation with Adaptation to Natural and Multidomain Metric,

Computer Methods in Applied Mechanics and Engineering 194 (2005)

4951 – 4976.

[32] B. Lévy, Robustness and Efficiency of Geometric Programs: The Predicate

Construction Kit, Computer-Aided Design 72 (2016) 3–12.650

[33] J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast

Robust Geometric Predicates, Discrete & Computational Geometry 18

(1996) 305–363.

[34] T. Coupez, H. Digonnet, R. Ducloux, Parallel Meshing and Remeshing,

Applied Mathematical Modelling 25 (2000) 153–175.655

[35] H. W. Kuhn, Simplicial Approximation of Fixed Points, Proceedings of

the National Academy of Science 61 (1968) 1238–1242.

[36] P. C. Caplan, Four-dimensional Anisotropic Mesh Adaptation for Space-

time Numerical Simulations, PhD thesis, Massachusetts Institute of Tech-

nology, 2019.660

40

[37] F. Alauzet, A. Loseille, A Decade of Progress on Anisotropic Mesh Adap-

tation for Computational Fluid Dynamics, Computer-Aided Design 72

(2016) 13–39.

[38] D. Ibanez, N. Barral, J. Krakos, A. Loseille, T. Michal, M. Park, First

Benchmark of the Unstructured Grid Adaptation Working Group, Pro-665

cedia Engineering 203 (2017) 154 – 166. 26th International Meshing

Roundtable.

[39] A. Loseille, F. Alauzet, Continuous Mesh Framework Part I: Well-Posed

Continuous Interpolation Error, SIAM Journal on Numerical Analysis 49

(2011) 38–60.670

[40] A. Loseille, Metric-Orthogonal Anisotropic Mesh Generation, Procedia

Engineering 82 (2014) 403 – 415. 22nd International Meshing Roundtable.

[41] T. Coupez, Metric Construction by Length Distribution Tensor and Edge

Based Error for Anisotropic Adaptive Meshing, Journal of Computa-

tional Physics 230 (2011) 2391–2405.675

[42] F. J. Bossen, P. S. Heckbert, A Pliant Method for Anisotropic Mesh Gen-

eration, in: Proceedings of the 5th International Meshing Roundtable,

1996, pp. 63–74.

[43] V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean Metrics for

Fast and Simple Calculus on Diffusion Tensors, Magnetic Resonance in680

Medicine 56 (2006) 411–421.

[44] M. Yano, An Optimization Framework for Adaptive Higher-Order Dis-

cretizations of Partial Differential Equations on Anisotropic Simplex

Meshes, PhD thesis, Massachusetts Institute of Technology, 2012.

[45] M. Yano, D. L. Darmofal, An Optimization-Based Framework for685

Anisotropic Simplex Mesh Adaptation, Journal of Computational Physics

231 (2012) 7626–7649.

41

[46] A. Loseille, F. Alauzet, Optimal 3D Highly Anisotropic Mesh Adaptation

Based on the Continuous Mesh Framework, in: Proceedings of the 18th

International Meshing Roundtable, Springer Berlin Heidelberg, 2009, pp.690

575–594.

[47] A. Loseille, A. Dervieux, F. Alauzet, On 3D Goal-Oriented Anisotropic

Mesh Adaptation Applied to Inviscid Flows in Aeronautics, in: 48th

AIAA Aerospace Sciences Meeting Including the New Horizons Forum

and Aerospace Exposition, 1067, 2010.695

[48] A. Loseille, F. Alauzet, Continuous Mesh Framework Part II: Validations

and Applications, SIAM Journal on Numerical Analysis 49 (2011) 61–86.

[49] L. Formaggia, S. Perotto, New Anisotropic A Priori Error Estimates,

Numerische Mathematik 89 (2001) 641–667.

[50] W. Huang, Metric Tensors for Anisotropic Mesh Generation, Journal of700

Computational Physics 204 (2005) 633 – 665.

[51] P. Frey, F. Alauzet, Anisotropic Mesh Adaptation for CFD Computations,

Computer Methods in Applied Mechanics and Engineering 194 (2005)

5068 – 5082.

[52] T. Coupez, G. Jannoun, J. Veysset, E. Hachem, Edge-Based Anisotropic705

Mesh Adaptation for CFD Applications, in: X. Jiao, J.-C. Weill (Eds.), Pro-

ceedings of the 21st International Meshing Roundtable, Springer Berlin

Heidelberg, 2013, pp. 567–583.

[53] Very High Order Anisotropic Metric-Based Mesh Adaptation in 3D, Pro-

cedia Engineering 163 (2016) 353–365.710

[54] A. Loseille, A. Dervieux, P. Frey, F. Alauzet, Achievement of Global Sec-

ond Order Mesh Convergence for Discontinuous Flows with Adapted

Unstructured Meshes, AIAA 4186, 2007.

42

[55] F. Alauzet, A. Loseille, High-Order Sonic Boom Modeling Based on

Adaptive Methods, Journal of Computational Physics 229 (2010) 561 –715

593.

[56] F. Alauzet, Size Gradation Control of Anisotropic Meshes, Finite Ele-

ments in Analysis and Design 46 (2010) 181–202.

[57] A. Belme, F. Alauzet, A. Dervieux, An A Priori Anisotropic Goal-

Oriented Error Estimate for Viscous Compressible Flow and Application720

to Mesh Adaptation, Journal of Computational Physics 376 (2019) 1051 –

1088.

[58] J. Kudo, Robust Adaptive High-Order RANS Methods, Master’s thesis,

Massachusetts Institute of Technology, Computation for Design and Op-

timization, 2014.725

[59] P. Houston, E. H. Georgoulis, E. Hall, Adaptivity and A Posteriori Error

Estimation for DG Methods on Anisotropic Meshes, in: Proceedings of

the International Conference on Boundary and Interior Layers, 2006.

[60] W. Cao, An Interpolation Error Estimate on Anisotropic Meshes in Rn

and Optimal Metrics for Mesh Refinement, SIAM Journal on Numerical730

Analysis 45 (2007) 2368–2391.

43

	Introduction
	Mesh adaptation via local operators
	Dimension-independent local operators
	Maintaining a valid mesh
	Recovery of common mesh modification operators
	The importance of the geometry metadata
	Achieving anisotropy using a background metric field
	Scheduling the local operators

	Applications I: metric-conforming mesh generation
	Applications II: optimal approximant of a scalar function
	Mesh optimization via error sampling and synthesis
	Boundary layer
	Expanding spherical wave

	Perspectives

