Four-Dimensional Anisotropic Mesh Adaptation for

Spacetime Numerical Simulations
Philip Claude Caplan

S.M. Massachusetts Institute of Technology (2014)
B.Eng. McGill University (2012)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics at the
Massachusetts Institute of Technology

June 2019

©Massachusetts Institute of Technology 2019. All rights
reserved.

Author. ...
Department of Aeronautics and Astronautics

May 23rd, 2019

Certified by ...
David L. Darmofal

Professor of Aeronautics and Astronautics, MIT

Thesis Committee Chair

Certified by ...
Robert Haimes

Principal Research Engineer, MIT

Thesis Committee Member

Certified by ...
Jaume Peraire

H.N. Slater Professor of Aeronautics and Astronautics, MIT

Thesis Committee Member

Accepted by ...

Sertac Karaman
Associate Professor of Aeronautics and Astronautics, MIT
Chairman, Graduate Program Committee

Four-Dimensional Anisotropic Mesh Adaptation for Spacetime Numerical Simulations

Philip Claude Caplan
Submitted to the Department of Aeronautics and Astronautics
on May 23rd, 2019, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Engineers and scientists are increasingly relying on high-fidelity numerical simulations. Within these
simulations, mesh adaptation is useful for obtaining accurate predictions of an output of interest subject
to a computational cost constraint. In the quest for accurately predicting outputs in problems with time-
dependent solution features, a fully unstructured coupled spacetime approach has been shown to be
useful in reducing the cost of the overall simulation. However, for the simulation of unsteady three-
dimensional partial differential equations (PDEs), a four-dimensional mesh adaptation tool is needed.

This work develops the first anisotropic metric-conforming four-dimensional mesh adaptation tool
for performing adaptive numerical simulations of unsteady PDEs in three dimensions. The theory and
implementation details behind our algorithm are first developed alongside an algorithm for constructing
four-dimensional geometry representations. We then demonstrate our algorithm on three-dimensional
benchmark cases and it appears to outperform existing implementations, both in metric-conformity and
expected tetrahedra counts. We study the utility of the mesh adaptation components to justify the design
of our algorithm. We then develop four-dimensional benchmark cases and demonstrate that metric-
conformity and expected pentatope counts are also achieved. This is the first time anisotropic four-
dimensional meshes have been presented in the literature.

Next, the entire mesh adaptation framework, Mesh Optimization via Error Sampling and Synthesis
(MOESS), is extended to the context of finding the optimal mesh to represent a function of four variables.
The mesh size and aspect ratio distributions of the optimized meshes match the analytic ones, thus
verifying our framework. Finally, we apply MOESS in conjunction with the mesh adaptation tool to
perform the first four-dimensional anisotropic mesh adaptation for the solution of the advection-diffusion
equation. The optimized meshes effectively refine the solution features corresponding to both a boundary
layer solution as well as an expanding spherical wave.

Thesis Supervisor: David L. Darmofal
Title: Professor of Aeronautics and Astronautics, MIT

Thesis Supervisor: Robert Haimes
Title: Principal Research Engineer, MIT

Thesis Supervisor: Jaume Peraire
Title: H.N. Slater Professor of Aeronautics and Astronautics, MIT

Acknowledgements

No way could this work
Have seen the light of day,
Were it not for the many
Who helped along the way.

My first week in the lab

in September 2012,

"From where do you join us?""
So welcomed I felt.

A grasshopper I was,

In front of a class.

But I've had a great coach?,
And now I'm up to the task.

I learned the importance,
Though some still don't see -
Of - a thing-ama-bob?

No! Of the geometry!3

Now is it sans or is it mit?4
Or is it with — or without?
I'm so confused, please help!

Ah a unit test — there’s no doubt.

It’s a good thing I write code,
Because some> are aware

Of my nightmarish practices
With the machines downstairs.

Without eyes® on this text
You’'d wonder: how can it be?

He spoke English for thirty years?

He’d be last in a spelling bee!

To those” who were patient
With the customs I imposed.
Make coffee! Mind the lights!
In the recycling, that goes!

' Jaume Peraire

2 David Darmofal

3 Bob

4 Arthur, Ben, Carmen, Cory, Hugh,
Marshall, Savithru, Shun, Steve All-
maras

5Max, Sarthak, Rich, Dave Robertson,
Todd Billings, Unified class of 2017

® Mike Park

7 Anyone sitting in 37-312

Some of you kept me
Healthy and sane.

With a coffee or a beer®
Or the lifestyle in Spain®.

I'd be lost without those™®

Who never let me forget:

A deadline! Your reimbursement!
Did you get your insulin®* yet?

Far off in the woods,
Is a home away from home,
Where the birds are well-fed,

A loving bunch™ makes me welcome.

But my true home always is
With the denmates™3 in my heart,
And ever-supportive bears'4,
This way, we're never apart.

Now, never would I deliver
This work - even a sliver -
Without a giver so sillier,
My heart was soon tillered,
And filler’d with a river

Of love so much bigger,

I owe many thanks

To my purple-haired pillar®>.

Last, but not least,

I must credit my funding source.
Though Canadian I am,

I thank the US Air Force®.

8 Fan, Irina, Nisha, Patrick, Victor

9 Abel, Eloi, Ferran, Guillem, Julia, Xevi

1 Beth, Jean, Robin, Pam

" Jessica

2 Caroline, Dot, Ellie, Mike, Ollie

3 Ryan, Alex, Ursa

4 Maman, Dad,
Grandmaman, Grandpapa, Nani

5 Catherine Miller

® This work was funded by the CAPS
project: AFRL Contract FA8050-14-C-
2472: CAPS: Computational Aircraft Proto-
type Syntheses with Dean Bryson as tech-
nical monitor.

CONTENTS

Introduction 17
1.1 Motivation 17
1.2 Background 19
1.3 Objectives 26

Preliminaries 29

2.1 Meshes 29

2.2 Metric fields 32

2.3 Metric-conforming meshing 34

2.4 Numerical discretization of partial differential equations 37
2.5 MOESS 38

2.6 Summary 42

Four-dimensional mesh adaptation 43

3.1 Background 43

3.2 Dimension-independent local operators 44

3.3 The importance of the geometry metadata 51

3.4 Scheduling the local operators 52

3.5 Assessment of the mesh adaptation capability 59
3.6 Perspectives 75

8 CONTENTS

Applications to adaptive simulations 77
4.1 Background 77

4.2 L2 error control 78

4.3 Scalar advection-diffusion 93

4.4 Perspectives 104

Conclusions 107

5.1 Summary 107

5.2 Future work 108

Geometry and visualization 113

A.1 Background 113

A.2 A simple result from polytope theory 114
A.3 Tesseract geometry 115

A.4 Visualizing a four-dimensional mesh 119

A.5 Perspectives 122

Restricted Voronoi diagrams 123

B.1 Background 123

B.2 Centroidal Voronoi tessellations 123

B.3 Computing restricted Voronoi simplices 124

B.4 Perspectives 128

Software implementation notes 129

C.1 avro 129

C.2 SANS 131

LisTt OF FIGURES

1.1
1.2

1.3

1.4
1.5

1.6
2.1

2.2
2.3
2.4

2.5

2.6
2.7

2.8

3.1
3.2
33
3.4
35

3.6

Schematic of an adaptive numerical simulation. 18
Time-marching versus unstructured spacetime approaches for the
solution of unsteady problems. 19

Uniform and tensor-product refinement approaches to capture a
spatiotemporal solution feature. 20

Satisfying the Delaunay property with an edge swap. 22
Ilustration of the embedding technique for anisotropic mesh gen-
eration. 23

Local edge split and edge collapse operators. 25

Equilateral tetrahedron x,, and right triangle « | ,. 29

Ellipse representation of a metric tensor in 24. 32
Interpolation of metric tensors using a background mesh. 34
Typical distribution of edge lengths for a metric-conforming mesh
in which all edge lengths are within the bounds of Equation 2.16. 35
Relationship between the physical (1) and reference elements (xp
and « |) for the calculation of the element-implied metric. 35
Ilustration of the duality between a mesh and its metric. 36
Example of a spacetime domain for solving a 2d unsteady prob-
lem. 37

Split configurations used to sample the error over a triangle for a
p = 3 discontinuous Galerkin discretization. 40

Identification of a set of cavity elements. 45

Selection of the set of insertion elements. 45

Terminology of Lemma 2. 47

Terminology of Proposition 1. 49

Metric conformity statistics for our algorithm applied to the UGAWG
benchmark cases. 63

Normalized number of simplices (% simplices) and fraction of
edges in the quasi-unit range (% conformity) produced by our
algorithm for each 3d benchmark UGAWG case. 63

10 CONTENTS

3.7 Meshes generated for the three-dimensional UGAWG benchmark
cases. 64

3.8 Meshes generated by variants of our mesh adaptation algorithm
applied to the Cube Linear UGAWG case. 67

3.9 Edgelength and tetrahedra quality histograms obtained by slightly
modifying Algorithm 3.6 when generating a mesh for the Cube
Linear case. 68

3.10 Normalized number of tetrahedra (% simplices) and fraction of
edges in the quasi-unit range (% conformity) when modifying Al-
gorithm 3.6 for the Cube Linear case. 68

3.11 Sphere expanding at constant velocity. 69

3.12 Temporal slice of a d + 1-cone produced from the expansion of a
d-sphere. 69

3.13 Fitted vertex, edge and triangle valencies for the metric-conforming
meshes of the four-dimensional benchmark cases. 70

3.14 Metric conformity statistics obtained from Algorithm 3.6 for the
four-dimensional benchmark cases. 71

3.15 Normalized number of simplices (% simplices) and fraction of
edges in the quasi-unit range (% conformity) for the four-dimensional
benchmark cases. 72

3.16 Meshes generated by Algorithm 3.6 for the Tesseract Linear 2
case. 73

3.17 Meshes generated from our adaptation algorithm for the Tesseract
Wave case. 74

4.1 Convergence of the DOF (as a fraction of the target) and the L% er-
ror in the solution for the boundary layer L? error control case. 81

4.2 Mesh size and aspect ratio distribution perpendicular to the x =0
wall of the 512k-optimized meshes when adapted to the L? error
between the discrete solution and the 4d boundary layer function
of Equation 4.3. 83

4.3 Bounding cube discretizations extracted from the final optimized
pentatopal mesh at 512k DOF for the L? error control boundary
layer case (p = 1). 84

4.4 Bounding cube discretizations extracted from the final optimized
pentatopal mesh at 512k DOF for the L? error control boundary
layer case (p = 2). 85

4.5 1000k-DOF (p = 1) optimized mesh and solution # when adapting
to the L? error in Equation 4.6 in two dimensions (r and ¢). 88

4.6 Convergence of the DOF (as a fraction of the target) and the L? er-
ror in the solution for the spherical wave L? error control case. 88

4.7 Bounding cube discretizations extracted from the final optimized
pentatopal mesh at 512k DOF for the L? error control spherical
wave case (p = 1). 89

CONTENTS 11

4.8 Bounding cube discretizations extracted from the final optimized
pentatopal mesh at 512k DOF for the L? error control spherical
wave case (p = 2). 90

4.9 Convergence of the L? error with mesh refinement for the bound-
ary layer and spherical wave cases (p =1 and p = 2). 92

4.10 Convergence of the L? error with mesh refinement for the sinu-
soidal decay case (p = 1 and p = 2) verifies the h"*! expected
convergence rate. 92

4.11 DOF fraction and error estimate versus adaptation iteration for
the boundary layer advection-diffusion case. 95

4.12 Optimized meshes at 512k DOF for the p = 1 advection-diffusion
boundary layer case. 96

4.13 Optimized meshes at 512k DOF for the p = 2 advection-diffusion
boundary layer case. 97

4.14 Error estimate and output error versus adaptation iteration for the
boundary layer advection-diffusion case. 98

4.15 Convergence of the error indicator and L? solution error with
mesh refinement for the boundary layer advection-diffusion case
(p=1and p =2). 98

4.16 Solution u (left) and adjoint (right) obtained on a p = 1 1000-
DOF optimized mesh for the solution of the advection-diffusion
equation with MMS (using Equation 4.6) in a 1d + t spherical-
temporal coordinate system. 99

4.17 DOF fraction and error indicator versus adaptation iteration for
the spherical wave advection-diffusion case. 100

4.18 Optimized meshes at 512k DOF for the p = 1 expanding spherical
wave case. 102

4.19 Optimized meshes at 512k DOF for the p = 2 expanding spherical
wave case. 103

4.20 Convergence of the output and error indicator with mesh refine-
ment for the spherical wave advection-diffusion case (p = 1 and

p=2). 104
5.1 Construction of a curvilinear mesh from a straight-sided one. 110

A.1 Vertices and facets (in blue) of an example polygon P to describe
the vertex-facet incidence relations. 114

A.2 Representation of the eight bounding cubes of the tesseract geom-
etry as a directed graph atthe x = 0,y =0,z =0and t =0
hyperplanes. 117

A.3 Representation of the eight bounding cubes of the tesseract geom-
etry as a directed graph atthe x =1,y =1,z =1and t =1
hyperplanes. 118

A.4 Schematic of how a 4d mesh is sliced to produce polyhedra. 120

12

CONTENTS

A.5 Visualization of a pentatopal mesh. 121
A.6 Visualization of a 4d Voronoi diagram. The colours correspond to

B.1
B.2

Ci

the Voronoi cells in which the clipped polyhedra reside. 122

Clipping a simplex by a Voronoi cell create by the site u;. 125
Convergence of the CVT energy of Equation B.4 (normalized by
the initial energy) versus iteration of Lloyd relaxation for the op-
timization of 40 Voronoi sites in [0,1]" (n = 2,3,4) as well as for
approximately 200 sites on the mesh of a giraffe. 127

Finding the ball of p using the inverse topology and marching
through neighbours. 130

LisT OF TABLES

3.1
3.2

33

3.4

35

3.6

4.2

43

44

45

Choice of re-insertion vertices for local operators. 50
Metric-conformity statistics for the UGAWG benchmark cases: Cube
Linear (CL), Cube-Cylinder Linear (CCL), Cube-Cylinder Polar 1
(CCP1) and Cube-Cylinder Polar 2 (CCP2). 62
Metric-conformity statistics obtained by slightly modifying Algo-
rithm 3.6 when generating a mesh for the Cube Linear case. Recall
that 39k tetrahedra are expected for this case. 66
Metric-conformity statistics for the 4d benchmark cases with and
without DOF control enabled. 71

Number of vertices, edges, triangles and tetrahedra along with the
corresponding mean valencies for the metric-conforming meshes
of the four-dimensional benchmark cases. 72

Cost of the discontinuous (dG) and continuous (cG) discretiza-
tions with various polynomial orders p for the metric-conforming
meshes produced for the four-dimensional benchmark cases. 75

Metric conformity statistics at the final adaptation iteration for
the L2 boundary layer error control case with both p = 1 (top)
and p = 2 (bottom) discretizations. 81

Mesh size and aspect ratio regression coefficients obtained from
the p = 1 (top) and p = 2 (bottom) optimized meshes for the L2
error control boundary layer case with e = 0.01. 82

Mesh size and aspect ratio regression coefficients obtained from
the p = 1 (top) and p = 2 (bottom) optimized meshes for the L2
error control boundary layer case with e = 0.1. 86

Maximum aspect ratios of the pentatopal meshes optimized at
various target DOF requests for the spherical wave L? error control
case (p =1and p = 2). 87

Metric conformity statistics at the final adaptation iteration for
the L? spherical wave error control case with both p = 1 (top) and
p = 2 (bottom) discretizations. 91

14

4.6

47

4.8

49

A1

Ci1

C.2
Cs

CONTENTS

Metric conformity statistics at the final adaptation iteration for the
advection-diffusion boundary layer case with both p = 1 (top) and
p = 2 (bottom) discretizations. 95

Metric conformity statistics at the final adaptation iteration for the
spherical wave advection-diffusion case with both p = 1 (top) and
p = 2 (bottom) discretizations. 100

Valency statistics for the p = 1 512k DOF-optimized meshes in
this chapter for the boundary layer (BL) and spherical wave (SW)
cases for either the L? error control or advection-diffusion (PDE)
problems. 105

Cost of the discontinuous (dG) and continuous (cG) discretiza-
tions with various polynomial orders p for the meshes optimized
at p = 1 512k DOF in this chapter. 105

Estimated cost per pentatope for the discontinuous (dG) and con-
tinuous (cG) Galerkin methods with various polynomial orders. 112

Tesseract Node coordinates and the set of facets on each Node. 115

Association between algorithms in this thesis with the correspond-
ing implementations in avro. 131

Local split implementation capabilities. 134

Timing results for splits with the discontinuous Galerkin discretiza-
tion with previous (XField_Local, XField_ElementLocal) and cur-
rent (XField_LocalPatch) implementations. 134

Timing results for splits used with the continuous Galerkin dis-

cretization with previous (XField_ElementLocal) and current (XField_LocalPatch)

implementations. 134

LisT OF ALGORITHMS

3.1 Vertex smoothing algorithm. 54

3.2 Edge swap algorithm. 54

3.3 Edge swap kernel. 55

3.4 Edge collapse algorithm. 56

3.5 Edge split algorithm. 57

3.6 Mesh adaptation algorithm. 58

3.7 Target metric assessment procedure. 60

4.1 Adaptation algorithm to compute the optimal L? approximant of
a 44 function. 79

4.2 Adaptation algorithm to compute the optimal mesh to resolve the
solution to a 3d + t scalar advection-diffusion PDE. 94

A.1 Unique identification of topology hierarchy for the tesseract. 116
A.2 Visualization of a 4d mesh by slicing with a hyperplane. 121

B.1 Calculation of a restricted Voronoi polytope. 126

C.1 Exact calculation of the volume of a pentatope in the language of
the Predicate Construction Kit. 130

CHAPTER 1

INTRODUCTION

It’s not about aptitude.
It’s about attitude.
— Masayuki Yano

1.1 Motivation

ok

The increase in computational power in the last several decades has % Hi, I'm a Voronoi diagram
. ¢ and I'll be here to clarify
given rise to efficient algorithms for predicting engineering quantities
)) ‘)) })] concepts along the way.
of interest with numerical simulations. In particular, high-order fi-
nite element methods combined with mesh adaptation techniques for
numerically solving partial differential equations have demonstrated
their potential for accurately predicting these quantities. Yano and _
. . 1. Yano et al., The Importance of Mesh Adap-
Darmofal® remark upon the importance of mesh adaptation when us- tation for Higher-Order Discretizations of
. Aerod ic Flows. 2
ing high-order discretizations for estimating the drag and lift with the =77/ 7 =00
Reynolds-Averaged Navier-Stokes equations. This finding is further ot ol CED Vi oy
L. . . 2. Slotnick et al., C /ision 2030 Study:
Supported by the CFD Vision 2030 study2 in which the authors em- 4 pati 1o Revolutionary Computational Aero
sciences. 2014

phasize the development of (1) mesh adaptation and (2) high-order
discretizations to achieve an autonomous and reliable CFD simulation.

A typical adaptive numerical simulation is shown in Figure 1.1. The
simulation begins with a description of the domain geometry, a system
of partial differential equations (PDEs) along with appropriate bound-
ary conditions, the engineering output of interest and a measure of
the computational cost available to expend on the simulation. Upon
entry into the simulation loop, the domain is decomposed into a mesh,
a discrete representation of the domain through a collection of non-
overlapping elements. The partial differential equation (PDE) is solved
on this initial mesh and error estimation techniques are used to assess

18 CHAPTER 1. INTRODUCTION

the numerical error in the output resulting from the discretization of
the PDE. If the error is within tolerance, the adaptive simulation is
finished. However, when the error is too large and the computational
cost is still below the limit, the mesh is adapted to reduce this error and
the loop returns to the solver block.

e PDE

e Output
e Error

e Geometry Compute Estimate | [y
e Output solution error | 1

e Cost

For the calculation of time-varying outputs, Yano demonstrated that
a significant computational savings can be achieved by adapting in a
spatiotemporal domain3. For example, consider a one-dimensional
problem with a propagating feature of characteristic size 6 (moving
from left to right in Figure 1.2(a)). A purely spatial mesh would re-
quire elements of width Ax < J near the feature to accurately resolve
its position. Now, to accurately track the position in time, a tradi-
tional time-marching approach (Figure 1.2(a)) would require a small
time step (At) to accurately resolve the feature. A fully unstructured,
coupled spacetime approach (Figure 1.2(b)) would accurately resolve
the feature if the mesh elements are stretched to directly align with
the anisotropic feature in a now two-dimensional domain. The latter
has the advantage of dramatically reducing the number of elements
required to achieve a similar level of error with a time-marching ap-
proach. Previous efforts have successfully applied this technique to
capture convecting vortices? and for spacetime oil reservoir simula-
tions#5 in 2d + t.

The ultimate goal of this work is to develop a meshing tool to be
used in conjunction with an adaptive numerical simulator for the so-
lution of PDEs in 3d + t to enable the accurate solution of unsteady
problems. To do so, we will need a four-dimensional meshing capabil-

ity.

Figure 1.1: Schematic of an adaptive nu-
merical simulation.

3. Yano, An Optimization Framework for
Adaptive Higher-Order Discretizations of Partial
Differential Equations on Anisotropic Simplex
Meshes. 2012

3. Yano, An Optimization Framework for
Adaptive Higher-Order Discretizations of Partial
Differential Equations on Anisotropic Simplex
Meshes. 2012

4. Jayasinghe, An Adaptive Space-Time
Discontinuous Galerkin Method for Reservoir
Flows. 2018

5. Jayasinghe et al., A Space-Time Adaptive
Method for Reservoir Flows: Formulation and
One-Dimensional Application. 2018

1.2. BACKGROUND 19

t t
T—» i L>
X Ax X

(a) Time-marching approach. (b) Unstructured approach.

1.2 Background

Mesh adaptation for the numerical solution of unsteady partial differ-
ential equations

Unsteady partial differential equations can be solved by discretizing
the spatial domain with, say, a finite element method, thus construct-
ing an ordinary differential equation that can be discretized in time.
This fixed (in time) spatial mesh can be adapted, however, the com-
putational cost remains high because this single mesh would need to
capture all spatial and temporal solution features.

Alternatively, the finite element method can be used to discretize
the entire spatiotemporal domain — see the pioneering work of Oden®,
Argyris and Scharpf’ and Fried®. This coupling method enables the
use of a wider range of adaptation techniques, ranging from timeslab
to fully unstructured approaches.

First, a timeslab approach constructs spacetime elements as the
tensor-product of a (possibly unstructured) spatial element with a time
interval. These are simpler than fully unstructured spatiotemporal ap-
proaches because they essentially require spatially-adapted meshes.
The coupled spatiotemporal mesh can be constructed in several ways.
Behr? extrudes an initial spatial mesh to form prismatic elements which
are then subdivided to form the required simplices. Temporal refine-
ment is achieved by inserting vertices along edges formed during this
extrusion process. The Tent Pitcher algorithm of Ungor'® is essentially
an advancing front method, starting from an initial spatial mesh and
inserts points in the temporal direction to satisfy a cone constraint im-
posed by the characteristics of the governing PDE. This method was
extended to the 3d 4t case by Mont''. Thite'? improved the Tent

Figure 1.2: Time-marching versus un-
structured spacetime approaches for the
solution of unsteady problems.

6. Oden, A General Theory of Finite Elements II.
Applications. 1969

7. Argyris et al., Finite Elements in Time and
Space. 1969

8. Fried, Finite-Element Analysis of Time-
Dependent Phenomena. 1969

9. Behr, Simplu.\ Space-Time Meshes in Finite
Element Simulations. 2008

10. Ungor et al., Tent-Pitcher: A Meshing
Algorithm for Space-Time Discontinuous Galerkin
Methods. 2000

11. Mont, Adaptive Unstructured Spacetime
Meshing for Four-Dimensional Spacetime
Discontinuous Galerkin Finite Element Methods.
2011

12. Thite, Adaptive Spacetime Meshing for
Discontinuous Galerkin Methods. 2007

https://dx.doi.org/10.1002/fld.1796
https://dx.doi.org/10.1002/fld.1796
https://dx.doi.org/10.1016/j.comgeo.2008.07.003
https://dx.doi.org/10.1016/j.comgeo.2008.07.003

20 CHAPTER 1. INTRODUCTION

Pitcher algorithm to also allow for coarsening of 2d + t spatiotemporal
meshes.

Fidkowski also employs a tensor-product approach for the solution
of the compressible Navier-Stokes equations'3'4 in which the spatial
mesh is fixed and the temporal discretization is refined by bisecting
the time intervals. In other words, each spatial element at a particular
time takes the same time step.

Bangerth and Rannacher'> employ a hierarchical refinement ap-
proach to subdivide quadrilateral spatiotemporal elements in a tensor-
product manner (Figure 1.3(b)). Their adaptive method is driven by
the dual-weighted residual error estimator. They demonstrate the ap-
proach on linear second-order hyperbolic problems in 14 + t and later
to 2d + t*°. They conclude that their refinement approach is superior
to uniform refinement approaches (Figure 1.3(a)) in achieving a lower
output error at a lower DOF count. The advantage of this tensor-
product approach was further demonstrated for Burger’s equation by
Hartmann'7.

Yano demonstrates that these tensor-product approaches are effec-
tively isotropic and, whereas they offer a substantial DOF savings over
uniform refinement, they are dramatically outperformed by a fully un-
structured anisotropic approach. In the context of the one-dimensional
problem of Figure 1.2 with a propagating feature of characteristic size
4, Yano experimentally observes that uniform (Figure 1.3(a)), tensor-
product (Figure 1.3(b)) and anisotropic refinement approaches (Fig-
ure 1.2(b)) respectively require O(6=2), O(6~1) and O(1) DOF.

t L. t L.
X X
(a) Uniform. (b) Tensor-product.

Yano further demonstrates his approach for nonlinear 24 + t prob-
lems which is later extended to oil reservoir simulations by Jayas-
inghe*. In fact, Jayasinghe5 is the first to demonstrate that a spatiotem-
poral approach also scales very well with the number of parallel pro-

13. Fidkowski et al., Output-Based Space-
Time Mesh Adaptation for the Compressible
Navier-Stokes Equations. 2011

14. Fidkowski, Output-Based Space-Time
Mesh Opffmi:(lfimzﬁn’ Un.sh’ml}/ Flows Using
Continuous-in-Time Adjoints. 2017

15. Bangerth et al., Finite Element Approxi-
mation of the Acoustic Wave Equation: Error
Control and Mesh Adaptation. 1999

16. Bangerth et al., Adaptive Galerkin Finite
Element Methods for the Wave Equation. 2010

17. Hartmann, Adaptive FE Methods for
Conservation Equations. 2001

Figure 1.3: Uniform and tensor-product
refinement approaches to capture a spa-
tiotemporal solution feature (in red).

4. Jayasinghe, An Adaptive Space-Time
Discontinuous Galerkin Method for Reservoir
Flows. 2018

5. Jayasinghe et al., A Space-Time Adaptive
Method for Reservoir Flows: Formulation and
One-Dimensional Application. 2018

https://dx.doi.org/10.1016/j.jcp.2017.04.005
https://dx.doi.org/10.1016/j.jcp.2017.04.005
https://dx.doi.org/10.1016/j.jcp.2017.04.005

1.2. BACKGROUND 21

cessors when compared to time-marching approaches. The use of a
fully unstructured spatiotemporal approach to solve 3d + t problems
is well motivated but has yet to be demonstrated.

Mesh generation versus adaptation

At this point, it is worth highlighting the distinction we make between
mesh generation and mesh adaptation.

* Mesh generation: consists of the complete construction of the topol-
ogy of a mesh. An input set of points may be provided or may be
determined during the mesh generation procedure. For example,
the Delaunay triangulation constructs the set of triangles satisfying
the Delaunay property from a fixed input set of points. Mesh gener-
ation might, but is not required to, start with an initial mesh.

e Mesh adaptation: consists of the modification of an initial mesh
to match some desired properties. Both the topology and vertices
(points) of the mesh may be modified by the adaptation procedure.
An input mesh must be provided.

Whenever we employ the term meshing, it should be understood as
either mesh generation or adaptation in an application where either
approach might be suitable. That is, meshing will refer to the construc-
tion of a new mesh, whether it be entirely new (generation) or as a
modification of an initial mesh (adaptation).

In the next sections, we describe common methods for mesh gen-
eration and adaptation, primarily for two- and three-dimensional do-
mains. Some algorithms are inherently dimension-independent, though
lack practical demonstrations in higher-dimensions. The goal is to se-

lect a method which we can use to generate anisotropic four-dimensional

meshes.

Anisotropic meshing by advancing fronts

The advancing front method is successful at generating meshes about
complex geometries by beginning with a discretization of the domain
boundaries. It then proceeds by inserting points until the domain vol-
ume is filled with elements'®2°. Fronts may be advanced into a void
domain in which expensive intersection calculations need to be em-
ployed to detect front collisions, or can be advanced into an existing
mesh?! so as to robustly determine when front collisions occur.

The method readily extends to the anisotropic setting, in which the
placement of each point is guided by requested sizing and stretching
fields*>*?3. Alternatively, layers can be advanced®+?> to achieve the or-
thogonal high aspect-ratio elements often desired to capture boundary
layers when solving the Navier-Stokes equations.

18. Peraire et al., Adaptive Remeshing for
Compressible Flow Computations. 1987

19. Lohner et al., Generation of Three-
Dimensional Unstructured Grids by the
Advancing-Front Method. 1988

20. Peraire ef al., Finite Element Euler Compu-
tations in Three Dimensions. 1988

21. Marcum et al., Unstructured Grid Gener-
ation Using Iterative Point Insertion and Local
Reconnection. 1995

22. Lohner, Adaptive Remeshing for Transient
Problems. 1989

23. Peraire et al., Adaptive Remeshing for Three-
Dimensional Compressible Flow Computations.
1992

24. Pirzadeh, Three-Dimensional Unstructured
Viscous Grids by the Advancing-Layers Method.
1996

25. Alauzet et al., A Closed Advancing-Layer
Method with Connectivity Optimization-based
Mesh Movement for Viscous Mesh Generation.
2015

https://dx.doi.org/10.1002/fld.1650081003
https://dx.doi.org/10.1002/fld.1650081003
https://dx.doi.org/10.1002/fld.1650081003
https://dx.doi.org/10.1002/nme.1620261002
https://dx.doi.org/10.1002/nme.1620261002
https://dx.doi.org/http://dx.doi.org/10.1016/0045-7825(89)90024-8
https://dx.doi.org/http://dx.doi.org/10.1016/0045-7825(89)90024-8
https://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(92)90401-J
https://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(92)90401-J
https://dx.doi.org/10.1007/s00366-014-0385-7
https://dx.doi.org/10.1007/s00366-014-0385-7
https://dx.doi.org/10.1007/s00366-014-0385-7

22 CHAPTER 1. INTRODUCTION

Anisotropic Delaunay mesh generation

The Delaunay kernel is based on the simple premise: no vertex shall
be contained within the circumscribing ball of a simplex. To satisfy this
property, various algorithms have been proposed to construct Delau-
nay triangulations (triangulations, here, referring to a mesh of any di-
mensional simplices)?® and implemented in softwares such as Qhul1%7.
Edge swaps are commonly used to satisfy the Delaunay property, as
shown in Figure 1.4.

w
w
p
0
v
u u
(a) Before swap (b) After swap

The extension of the Delaunay kernel to the anisotropic setting has
been achieved in 2d2873° and 3d3*. However, Boissonnat recently proved
that for any Riemannian manifold of dimension greater than two, the
anisotropic Delaunay triangulation of this manifold may not yield a
valid triangulation. In fact, he provides a minimum point sampling
density to guarantee the construction of a valid mesh. Either the man-
ifold needs to be sufficiently sampled, possibly using the algorithm
of Rouxel-Labbé3?, or the simplices need to be curved?3. Increasing
the sampling density compromises the ability to match the desired el-
ement sizes governed by the Riemannian metric. Furthermore, it is
unclear how to curve the mesh to produce valid simplices.

Anisotropic mesh generation via isometric embeddings

The concept of anisotropic mesh generation via isometric embeddings
was first proposed by Cafias et al.3* and revived by Lévy and Bon-
neel3>. This method is motivated by the difficulties when directly ex-
tending isotropic mesh generation algorithm to the anisotropic setting.
The technique consists of three main stages:

1. Stretch an input mesh and metric field to a higher-dimensional Eu-
clidean space such that the lengths of the edges of the mesh in the
Euclidean space match the lengths prescribed by the metric field. In

26. Watson, Computing the n-Dimensional
Delaunay Tessellation with Application to
Voronoi Polytopes. 1981

27. Barber et al., Qhull: Quickhull Algorithm

for Computing the Convex Hull. 2013

Figure 1.4: Satisfying the Delaunay
property with an edge swap. Before the
swap is applied, the vertex p lies within
the circumcircle of triangle uow. Cir-
cumcircles are outlined in red.

28. Borouchaki et al., Mailleur Bidimension-
nel de Delaunay Gouverné par une Carte de
Meétriques. Partie I: Algorithmes. 1995

29. Hecht, BAMG: Bidimensional Anisotropic
Mesh Generator. 1998

30. Bossen et al., A Pliant Method for
Anisotropic Mesh Generation. 1996

31. Dobrzynski et al., Anisotropic Delaunay
Mesh Adaptation for Unsteady Simulations. 2008

32. Rouxel-Labbé et al., Discretized Rieman-
nian Delaunay Triangulations. 2016

33. Boissonnat et al., An Obstruction to De-
launay Triangulations in Riemannian Manifolds.
2018

34. Canas et al., Surface Remeshing in Arbitrary
Codimensions. 2006

35. Lévy et al., Variational Anisotropic Sur-

face Meshing with Voronoi Parallel Linear

Enumeration. 2012

https://dx.doi.org/10.1093/comjnl/24.2.167
https://dx.doi.org/10.1093/comjnl/24.2.167
https://dx.doi.org/10.1093/comjnl/24.2.167
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2016.11.026
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2016.11.026
https://dx.doi.org/10.1007/s00454-017-9908-5
https://dx.doi.org/10.1007/s00454-017-9908-5
https://dx.doi.org/10.1007/s00371-006-0073-8
https://dx.doi.org/10.1007/s00371-006-0073-8

1.2. BACKGROUND 23

other words, construct an isometric embedding of the mesh-metric
pair.

2. Generate a uniform mesh of the domain defined by the stretched
mesh. This step regenerates the set of vertices and determines the
topology of the generated simplices.

3. Map the vertices of the new stretched mesh back to the original
domain.

As a result, the anisotropic mesh generation problem has been recast
as a uniform one in the embedding (stretched) space. An illustration
of this approach is shown in Figure 1.5. Observe that the isotropic
surface mesh in 3d becomes anisotropic when mapped back to 24.

isotropic

A few questions arise: how do we construct this isometric embed-
ding and what is the minimum dimension of the higher-dimensional
Euclidean space needed to achieve it? The latter question was ad-
dressed in the continuous case by Nash3%37 who proposed embed-
ding dimensions for the cases of piecewise-constant and smooth met-
ric fields. At the onset of this thesis work, the former question had
not yet been addressed for general metric fields. In fact, the works of
Canas and Lévy involved an explicit specification of the embedding
coordinates by using the normal vectors of an input surface; this was
further used in the work of Nivoliers3®. The first attempt to generalize
the embedding framework for anisotropic mesh generation for PDE-
driven adaptation was the work of Dassi3?™4* who used the gradient
of the solution to a PDE to construct a five-dimensional embedding.
He further generalized the method to 34 but the method was driven
purely by the solution to the PDE and not by a metric field.

Aside from the explicit formulations of their embeddings, Lévy and
Dassi’s approaches also differ in their remeshing methods. Lévy relies
on the dual of the restricted Voronoi diagram (computed in the higher-
dimensional space) to extract the final triangulation. This method is
attractive because the topology of the mesh is simply extracted from

Figure 1.5: Illustration of the embedding
technique for anisotropic mesh genera-
tion.

36. Nash, C! Isometric Imbeddings. 1954

37. Nash, The Imbedding Problem for Rieman-
nian Manifolds. 1956

38. Nivoliers ef al., Anisotropic and Feature
Sensitive Triangular Remeshing Using Normal
Lifting. 2015

39. Dassi et al., A Priori Anisotropic Mesh
Adaptation Driven by a Higher Dimensional
Embedding. 2017

40. Dassi et al., Curvature-Adapted Remeshing
of CAD Surfaces. 2014

41. Dassi et al., Anisotropic Finite Element
Mesh Adaptation via Higher Dimensional
Embedding. 2015

42. Dassi et al., An Anisoptropic Surface
Remeshing Strategy Combining Higher Dimen-
sional Embedding with Radial Basis Functions.
2016

https://dx.doi.org/10.1016/j.cam.2015.01.041
https://dx.doi.org/10.1016/j.cam.2015.01.041
https://dx.doi.org/10.1016/j.cam.2015.01.041
https://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2016.07.012
https://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2016.07.012
https://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2016.07.012
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.10.388
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.10.388
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2015.10.138
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2015.10.138
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2015.10.138
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.022
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.022
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.022

24 CHAPTER 1. INTRODUCTION

the restricted Voronoi diagram, meaning the isotropic mesh gener-
ation problem is reduced to a vertex smoothing problem along the
original embedded mesh. Lévy provides clipping algorithms to com-
pute restricted Voronoi polygons and polytopes+3 but it is unclear how
four-dimensional polytopes should be computed. Furthermore, the
extracted dual restricted Delaunay triangulation will have the same
geometry-conformity issues that have plagued the Delaunay method.
These issues have been addressed in two and three dimensions when
the dimension of the ambient Euclidean space is the same as that of
the dimension of the simplices. Notable software implementations to
recover a constrained Delaunay triangulation for two and three dimen-
sions are Triangle# and TetGen4>.

Dassi, instead, uses local mesh operators (such as splits, collapses
and swaps) in the embedding space but performs validity checks in the
original space. The method performs well when compared to existing
anisotropic mesh generators®®. However, the advantage of embedding
and remeshing using local mesh operators is unclear in contrast to
simply using local mesh operators in the original domain.

As mentioned earlier, the problem of computing an isometric em-
bedding with general metric fields had not been studied at the onset
of the current work (circa June 2015). In fact, our original work in 2017
introduced the first algorithm for computing a nearly isometric em-
bedding of meshes equipped with arbitrary Riemannian metric fields
in a dimension-independent manner. To compute the embedding, the
lengths of the geodesics between all vertices in the mesh were stored
in a dense Euclidean distance matrix. The eigendecomposition of this
matrix provided the higher-dimensional embedding coordinates, simi-
lar to the way multidimensional scaling has been used to infer a lower-
dimensional representation of high-dimensional data#®. A novel con-
cept in our work was to [ift the mesh coordinates so as to ensure the
embedded mesh does not self-intersect. After investigating issues with
geometry conformity when employing the restricted Voronoi diagram
in the embedding space, we ultimately realized the extracted mesh
may not be valid due to a loss of the one-to-one property when cre-
ating a new mesh in the higher-dimensional space. In fact, it might
still be possible to extract a valid mesh if the extracted simplices are
curved. Our practical finding is aligned with the theoretical finding
of Boissonnat, who suggested simplices should be curved when em-
ploying the anisotropic Delaunay kernel33. Our work on this topic was
published for the embeddings of straight-sided meshes*” and curvilin-
ear meshes*®.

More recently, Zhong et al.49 presented a method similar to our
technique. They also lift the mesh to the higher-dimensional Euclidean
space but use an optimization-based approach to compute the codi-

43. Lévy, "Geogram: A Programming Library of
Geometric Algorithms”. 2016
44. Shewchuk, Triangle: Engineering a

2D Quality Mesh Generator and Delaunay
Triangulator. 1996

45. Si, TetGen, a Delaunay-Based Quality

Tetrahedral Mesh Generator. 2015
29. Hecht, BAMG: Bidimensional Anisotropic
Mesh Generator. 1998

46. Tenenbaum et al., A Global Geometric
Framework for Nonlinear Dimensionality
Reduction. 2000

33. Boissonnat et al., An Obstruction to De-
launay Triangulations in Riemannian Manifolds.
| 8 :

2018
47. Caplan et al., Anisotropic Geometry-

Conforming d-simplicial Meshing via Isometric
Embeddings. 2017

48. Caplan et al., Isometric Embedding of
Curvilinear Meshes Defined on Riemannian
Metric Spaces. 2018

49. Zhong et al., Computing a High-dimensional
Euclidean Embedding from an Arbitrary Smooth
Riemannian Metric. 2018

https://dx.doi.org/10.1145/2629697
https://dx.doi.org/10.1145/2629697
https://dx.doi.org/10.1007/s00454-017-9908-5
https://dx.doi.org/10.1007/s00454-017-9908-5
https://dx.doi.org/10.1145/3197517.3201369
https://dx.doi.org/10.1145/3197517.3201369
https://dx.doi.org/10.1145/3197517.3201369

1.2. BACKGROUND 25

mension coordinates. The authors suggest their algorithm works in the
presence of anisotropy and that the provably terminating algorithm of
Rouxel-Labbé3? is implemented to increase the sampling density when
inverted elements are detected. However, it should be noted that they
study three-dimensional problems with anisotropy ratios of only 25:1.
In fact, they mention the point insertion algorithm is never triggered in
their problems. For truly anisotropic problems, either this algorithm
would be triggered or the extracted restricted Delaunay triangulation
would be invalid.

Anisotropic mesh adaptation via local mesh operators

Starting with an initial, geometry-conforming mesh, local mesh opera-
tors iteratively modify this mesh until a particular property is satisfied.
For example, the mesh simplices may be required to have a certain
minimum quality or minimum volume, measured under the Euclidean
metric. Operators such as vertex insertion, edge collapse, edge swaps
or vertex relocation can be used to achieve this property>°>2. Exam-
ples of edge splits and edge collapses are given in Figure 1.6; edge
swaps were discussed in Figure 1.4 when introducing the Delaunay
kernel.

ZaAl

(a) Edge split (b) Edge collapse

This approach extends well to the anisotropic setting3-54, provided
the geometric quantities such as length and volume are computed in
the Riemannian metric space.

Furthermore, these classical mesh operators can be viewed in a
dimension-independent cavity framework. The core concept, initially
proposed by Coupez®> replaces the geometric intuition behind the
mesh operators with a rigorous mathematical definition. Define a cav-
ity as a set of simply-connected simplices, homeomorphic to a ball, to
remove from the mesh. All the aforementioned operators can be recov-
ered by appropriately selecting a re-insertion vertex and connecting it to
the boundary of the removed cavity (forming a star in the terminology
of Coupez). That is, a local mesh modification by a cavity operator is
composed of the following simple steps:

32. Rouxel-Labbé et al., Discretized Rieman-
nian Delaunay Triangulations. 2016

50. Michal et al., Anisotropic Mesh Adaptation
through Edge Primitive Operations. 2012

51. Park et al., Parallel Anisotropic Tetrahedral
Adaptation. 2008

52. Park, Anisotropic Output-Based Adaptation
with Tetrahedral Cut Cells for Compressible
Flows. 2008

Figure 1.6: Local edge split and edge col-
lapse operators. (a) Edge uw is too long
and gets split, introducing the vertex g.
(b) Any of the edges vq, wq or pq might
be too short, and a collapse of the vertex
q onto either p, g or w would eliminate
short edges.

53. Alauzet et al., A Decade of Progress on
Anisotropic Mesh Adaptation for Computational
Fluid Dynamics. 2016

54. Loseille, Unstructured Mesh Generation and
Adaptation. 2017

55. Coupez, Génération de Maillage et Adap-
tation de Maillage par Optimisation Locale.

2000

https://dx.doi.org/https://doi.org/10.1016/j.proeng.2016.11.026
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2016.11.026
https://dx.doi.org/10.1016/j.cad.2015.09.005
https://dx.doi.org/10.1016/j.cad.2015.09.005
https://dx.doi.org/10.1016/j.cad.2015.09.005
https://dx.doi.org/https://doi.org/10.1016/bs.hna.2016.10.004
https://dx.doi.org/https://doi.org/10.1016/bs.hna.2016.10.004

26 CHAPTER 1. INTRODUCTION

1. Select an appropriate set of elements to remove from the mesh and
compute the boundary of these elements,

2. Select a vertex with corresponding coordinates to connect to the
boundary of the cavity,

3. Insert the set of elements formed by the connection of the chosen
vertex with the boundary of the cavity into the mesh.

Loseille’s recent work re-introduces this cavity framework®. The
methods of Loseille and Coupez differ in how they check for topo-
logical validity or enforce the application of an operator. They also
schedule their cavity operators differently and it is unclear how to
best schedule local operators to satisfy the requirements of an adap-
tive numerical simulation.

Furthermore, Loseille implements his operator for two- and three-

dimensional mesh adaptation. Gruau (a student of Coupez) only demon-

strated their framework for the special case of a uniform Euclidean
metric in four dimensions>7. This method seems the most promising
for generating four-dimensional meshes, however, the ability of the
algorithm in a truly anisotropic setting has yet to be demonstrated.

Tremblay also attempted to use local operators to adapt four-
dimensional meshes®. He used edge splits and collapses but avoids
edge swapping by employing a combination of point insertions and
collapses to simulate an edge swap. His algorithm does not seem capa-
ble of producing metric-conforming meshes since the resulting edge
lengths are short and the element quality is very poor, even for an an-
alytic metric with a maximum aspect ratio of 10:1. Tremblay further
attempts to demonstrate the algorithm for the solution of the unsteady
heat equation in 3d + t but the resulting mesh is isotropic.

Again, we emphasize that a successful anisotropic four-dimensional
mesh adaptation capability has yet to be demonstrated.

1.3 Objectives

The work in this thesis began with a quest for four-dimensional metric-
conforming meshes. The ultimate goal was to provide the meshing
tools needed to perform four-dimensional adaptive numerical simula-
tions. As a result, the first objective is to develop the tools for meshing,
geometry and visualization of four-dimensional problems. Our pre-
sentation of the background material on mesh generation and adap-
tation suggests the local cavity framework is the most promising for
adapting four-dimensional meshes. As such, we strive to extend and
demonstrate this method to anisotropic problems in four dimensions.
We also aim to fill the gap in the existing mesh adaptation literature in

56. Loseille et al., Unique Cavity-Based
Operator and Hierarchical Domain Partitioning
for Fast Parallel Generation of Anisotropic
Meshes. 2017

57. Gruau, Metric Generation for Anisotropic
Mesh Adaptation with Numerical Applications to
Material Forming Simulation. 2005

58. Tremblay, 2-D, 3-D and 4-D Anisotropic
Mesh Adaptation for the Time-Continuous Space:
Time Finite Element Method with Applications to
the Incompressible Navier-Stokes Equations. 2007

https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008

1.3. OBJECTIVES 27

the discussion of local operator implementation and scheduling. The
developed algorithm is compared against existing software implemen-
tations for three-dimensional mesh adaptation. Finally we use the de-
veloped mesh adaptation algorithm to first perform four-dimensional
mesh adaptation on L? error control problems. We then demonstrate
the first 3d + t mesh adaptation driven by the solution to the advection-
diffusion equation.

Contributions

The major contribution of this work is the development of dimension-
independent meshing techniques which are then applied to four-
dimensional problems. In fact, with the addition of a few simple pred-
icates (discussed in Appendix C), any dimensional problem can be
studied. The primary contributions of this work are summarized as
follows:

1. Development of an algorithm and software for four-dimensional
metric-conforming mesh adaptation,

2. Validation of the mesh adaptation capability by studying four-
dimensional metric-conforming, as well as L? error control prob-
lems,

3. Demonstration of the first PDE-driven anisotropic unstructured adap-

tation for unsteady 3d problems.

These primary contributions are complemented by other contributions
to the literature on mesh generation and adaptation. First, Appendix A
discusses our four-dimensional geometry and visualization tools. This
geometry description, in fact, is a critical component to our mesh adap-
tation algorithm. Furthermore, we first investigated the use of isomet-
ric embeddings to generate metric-conforming meshes in a dimension-
independent manner. The method was, in fact, the first to produce iso-
metric embeddings of arbitrary metric fields#74%. The development of
the latter technique came along with a dimension-independent algo-
rithm for computing restricted Voronoi diagrams of simplicial meshes
(outlined in Appendix B) as well as an algorithm for conforming to an
input geometry description with the restricted Voronoi diagram.

Outline

Chapter 2 establishes the terminology used in the remainder of this
thesis. Chapter 3 develops and demonstrates our four-dimensional
mesh adaptation algorithm and compares it against existing imple-
mentations for three-dimensional mesh adaptation. Finally, we demon-
strate the first four-dimensional mesh adaptation capability on L? error

47. Caplan et al., Anisotropic Geometry
Conforming d-simplicial Meshing via Isometric
Embeddings. 2017

48. Caplan et al., Isometric Embedding of
Curvilinear Meshes Defined on Riemannian
Metric Spaces. 2018

28 CHAPTER 1. INTRODUCTION

control and advection-diffusion problems in Chapter 4. The latter two
chapters employ the geometry description we develop in Appendix A.
Conclusions and recommendations for future work are given in Chap-
ter 5.

When reading this text,
please keep the open-
ing quote in the back of
your mind (in fact, these
words were said to me
at the onset of my PhD).
Though delving into the
fourth dimension might
seem daunting, maintain-
ing a positive attitude
and carefully studying the
mathematics behind our
algorithms will certainly
pay off.

PRELIMINARIES

Just learn the fundamentals.
Everything else is simple.

— John H.S. Lee

This chapter defines the terminology and notation used in the re-
mainder of this thesis. Boldface symbols will be used for vectors and
matrices and the scripts , j, k, [, m will be used for indexing. The scripts
d and n are used for dimensions, whether topological or physical.

2.1 Meshes

Before defining a mesh, let us cover the basic building blocks of a
mesh, notably, its elements. A n-simplex is the convex hull of n 41
affinely independent points, pg, p1,...,pn € R". Any point in the
simplex, including the boundary, can be described by

X = {szjpj (2.1)
j=0

n
th]- =1, andzxj >0, V]}
j=0

where «; are called the barycentric coordinates. The unit-length equi-
lateral (x5,) and unit-length orthogonal-corner (x|) n-simplices — see
Figure 2.1 — respectively have volumes of

v(Kp,) = ﬁ, (k)= % (2.2)

With the orthogonal corner at the origin, the remaining coordi-
nates of the unit-length orthogonal simplex %, , are p; = (1,0,..., 0)f,
p2=(0,1,...,0),, ..
length equilateral simplex can be computed using the properties that

., pn = (0,0,...,1)". The coordinates of the unit-

CHAPTER 2

P1
Po
P2
P3
P2
Po P1

Figure 2.1: Equilateral tetrahedron x,,
(top) and right triangle x| , (bottom). All
edges of the equilateral simplex have a
length of one. The edges of the orthogo-
nal corner simplex touching the orthog-
onal corner (at pp) have a length of one.

< Did you know?

dhidkr

S A 2-simplex is a triangle, a
é" 3-simplex is a tetrahedron
and a 4-simplex is a pen-

tatope.

30 CHAPTER 2. PRELIMINARIES

the distance from its centroid ¢ to any vertex p; is equal, and that the
dot product between any two vectors p; — ¢ = —1/n. These coordi-
nates are listed on the right for the unit equilateral triangle, tetrahe-
dron and pentatope. When the topological dimension of the simplex is

Equilateral triangl dinates:
clear, we will often drop the subscript for brevity. The unit-length equi- Quilateral triangle (1a,) coordinates

po = (%,0),
lateral simplex is used to compute the element metric (Equation 2.19) p1 = (_f Lf 1
237 4

whereas the orthogonal one is used to describe the reference element p, = (—535—3)-
on which we define basis functions and quadrature rules for our nu-

. . N . . Equilateral tetrahedron (x coordi-
merical discretization. The volume of an n-simplex x with vertex co- 1 (s,)

nates:
ordinates pg, p1, - -., Pn € R" can be computed from pPo = (34/3,0,0),
1 pP1= (721W/%r)
U(K) = = - - - (2) 2:(4 7L/l)/
= | Pr—Po P27=P0 ... Pn—Po |- -3 267 2y3r 2
Ps= (55 55 2

The exact calculation of the determinant in Equation 2.3 for pentatopes Equilateral pentatope (ia,) coordinates:

po = (1/3,0,0,0),

1 2 6
—;\@,%,0,0),

is described in Appendix C.
It is further useful to define a convex n-polytope, which is the convex

o . o p1=(
hull of m points in R", pg, p1,...,pm””. This description is referred p: _ (_1\/2 _l\ﬁ \/I 0
to as the V-representation (VRep). It is sometimes more convenient to | \/g Y 16\/T :
work with the H-representation (HRep) which describes the interior of P (7§ g 7? ; 7? f 7)1'
the polytope from the intersection of a finite number of halfspaces. ~ P*~ (71\/;71\/;75\/;75)'

The choice of which representation is used is driven by the particular s9. Griinbaum, “Convex Polytopes”. 2003
application.
A n-dimensional polytope is bounded by a set of j-dimensional
facets for j < n which are, themselves, j-dimensional polytopes. The
facets of simplices are also simplices and the number of j-simplices of
a n-simplex is given by the binomial coefficient

+1
f”/j = <7+ 1)’ (2.4)

For example, a triangle is bounded by three edges (1-simplices) and 3
vertices (o-simplices) whereas a tetrahedron is bounded by 4 triangles
(2-simplices), 6 edges (1-simplices) and 4 vertices (o-simplices).

Another special convex polytope is the n-cube which is the
n-dimensional analogue of the square and cube. It is bounded by j-
cubes (j < 1) and the number of these entities is given by

fuj =20 (’;) (25)

<1 Did you know?
The 2" vertices of the unit n-cube centered at the origin are computed

A pentatope is bounded

by permuting the n-tuple with entries 5. The 4-cube is called a tesser- 4k by 5 tetrahedra, 10 tri-

act. 6’ angles, 10 edges and 5

. . vertices. A tesseract is

Let V be a set of n, vertices: V = {v;|v; e RN,i=1,...,n,}. A bounded by 8 cubes, 24

mesh, M of some domain (), is a pair (V, T) where T represents the squares, 32 edges and 16
vertices.

topology that references the set of vertices V. We describe our meshes

https://www.springer.com/us/book/9780387004242

2.1. MESHES 31

using the VRep of each polytope, so T is a collection of element in-
dices:

T =x9Uxy - Ukp (2.6)
where the indices correspond to the vertices in V. Following the ter-
minology of Coupez>5, it is important to define a mesh topology.

Definition 1 (Mesh topology). Let V be a set of vertices in some domain
Q and T be a set of n-polytopes with vertices in V. Let F be the set of faces
(n — 1)-facets of T. T is called a mesh topology if

1. card(fNT) <2 VfeF,
2. (V,0T) is a mesh of 9.

Condition 1 simply means that every face of the mesh touches no
more than two elements and Condition 2 means that the boundary of
the mesh represents the boundary of the domain.

This boundary, denoted by oM = (V,0T), is a mesh itself, and is
the set of (n — 1)-facets that appear as a facet of only one polytope of
the mesh. Any (n — 1)-facet that is shared by two polytopes is not on
the boundary, but is interior. The extraction of the boundary is purely
topological (i.e., we only need to determine 97).

In the general case, every physical element x is a n-polytope (n <
N), therefore, for vertices in RN, the mesh M has topological dimension
n and physical dimension N. Unless otherwise stated, we will always
take N = n. The vertices of an element x will be denoted by the VRep
V(x) which gives a physical meaning to the purely topological element
x. We will often refer to this physical element as x to distinguish it
from the topological one, k. In this work, note that ¥ = conv(V(x)),
i.e., the convex hull of the vertices retrieved from the indices in «.

We strive to generate simplicial (triangular, tetrahedral, pentatopal)
meshes for adaptive numerical simulations but also discuss polytopal
(polygonal, polyhedral) meshes when exploring visualization tech-
niques and Voronoi diagrams. In the former case, it is sufficient to
simply define the mesh using 7 and V. In the polytopal case, we also
use the vertex-facet incidence matrix which is the list of (n — 1)-facets
touched by each vertex. This allows us to convert between the HRep
and VRep of a polytope, which we frequently use in Appendix A as
well as in our Voronoi diagram calculation#7.

As we will see in Chapter 3, a frequent operation in mesh adaptation
is the identification of the unique list of edges. For a simplicial mesh,
this is given by the relation on the vertices of the element «,

E(T)={e|le=xxx, VkeT}. (2.7)

This is a purely topological operation; that is, only the topology 7 is
required to construct the edges. The identification of the edges of a
polytopal mesh is discussed in Appendix A.

55. Coupez, Génération de Maillage et Adap-
tation de Maillage par Optimisation Locale.
2000

< Example: a topology with four ele-
ments.

o b

49 Ko = {5 3 1}
[4 K=1{9 0 3 5 2}
Ky = {2 8 4}
K3 {1 7 6 3}
47. Caplan et al., Anisotropic Geometry
Conforming d-simplicial Meshing via Isometric
Embeddings. 2017

32 CHAPTER 2. PRELIMINARIES

2.2 Metric fields

A metric tensor m is a n X n symmetric, positive-definite (SPD) tensor
which transforms the way distance, volume, angles and other geomet-
ric properties are measured. Given a constant metric field, the length
of the vector between points p € R” and q € R" is computed as

{m(p,q) = \/(q—p)tm(q—p)- (28)

The volume of a simplex « is transformed by a constant metric tensor
as

Um(x) = Vdetmo(x) (2.9)

where v(x) denotes the volume measured under the usual Euclidean
metric.

It is convenient to think about a metric tensor from the eigendecom-
position:

m = QAQ' = QH*Q'
where H = diag(ho, hy,...,h,) is the diagonal matrix of principal

(2.10)

lengths and the n eigenvectors Q are the principal directions. This
decomposition enables us to think of metric tensors as n-dimensional
hyperellipsoids; an example for the case n = 2 is shown in Figure 2.2.

A

= 1/VA

ho=1/vo

We work with Riemannian metric tensors, that is, spatially varying
fields of metric tensors. It is convenient to think of Riemannian met-
ric tensors as the induced metric tensor of some n-manifold. Under a
Riemannian metric, length and volume should be computed using the
usual definitions from differential geometry®:

tm(p,q) = [/T (Om(T(E)E (1)t

where T'(t) is the distance-minimizing curve, or geodesic, between p

(2.11)

and q. Here, we take I'(t) to be the edge between p and q, so I'(t) =

Figure 2.2: Ellipse representation of a
metric tensor m in 2d. The principal
directions are given by the eigenvectors
qo and q; of m and the semi-major and
semi-minor axes are related to the eigen-
values A of m via H = A~Y2. The
shaded blue triangle « is said to conform
to this metric because the lengths of its
edges relative to the axes of the ellipse
are approximately unit (see Section 2.3).
This representation extends to higher di-
mensions, notably as an ellipsoid in 3d
and a hyperellipsoid in 4d.

60. Carmo, Differential Geometry of Curves and
Surfaces. 1976

https://books.google.com/books?vid=ISBN0-13-212589-7
https://books.google.com/books?vid=ISBN0-13-212589-7

2.2. METRIC FIELDS 33

p + t(q — p). The integration in Equation 2.11 can be carried out with
a numerical quadrature scheme but we find it useful to approximate
the calculation by assuming the principal lengths, h(t), to vary accord-
ing to a geometric variation law®’. In this case, h(t) = h;h%’t, t €
[0,1] where hy and hy; are the lengths of the vector e = q — p com-
puted under the metrics evaluated at points p and q. That is, h, =
Cmp) (P,)/ |le]| and hy = Ly (q)(p,q)/|[e[|. Under this assumption,
the length of e is approximated as

r—1 . ¢
b (P, q) = Lin(p) rogr with r = gm(P)

. (2.12)
m(q)

In later chapters, when we write /i (e) where e is an edge of the mesh,
it should be understood as /i (eg, e1) where ey and e; are the coordi-
nates of the edge endpoint vertices. The volume of a physical element
x under a Riemannian metric field m should also be measured along
the Riemannian manifold:

om(x) = / y/detm(x) dx. (2.13)

Again, a quadrature scheme can be used to approximate this integral
but, in consistency with the Unstructured Grid Adaptation Working
Group®?, we prefer to approximate the volume as

Um(x) =~ \/detm, v(x), withv = arg max detm,. (2.14)

veK

In other words, the volume under the Riemannian metric is approxi-
mated as the volume under a constant metric m,. The volume of the
simplex under the usual Euclidean metric is denoted by v(x). This
measure is quicker to evaluate than using a quadrature scheme, which
is useful in situations in which the quality (hence, volume) need to be
evaluated several times, such as in a mesh adaptation tool.

It is also important to define the interpolation of metrics which can
be used to evaluate metrics on a background mesh obtained during
an adaptation request. Here, we use the Log-Euclidean interpolation®3
which interpolates a set of m metrics {m]-} with interpolation weights
w e R™ as

m
Mipterp = €XP (Z wjlog (mj)> . (2.15)
j=1
Note that the exponential and logarithm for tensors can be computed
from the eigendecomposition m = QAQ, yielding
exp(m) = Qexp(A)Q! and log(m) = Qlog(A)Q".

When computing the metric of a point p using a simplicial back-
ground mesh, the simplex containing the query point is first located
(1p) and then the interpolation weights become the barycentric coordi-
nates of p with respect to x;. The interpolant metrics are the metrics
defined at the vertices of the background simplex ;. See Figure 2.3.

61. Alauzet, Size Gradation Control x]f'
Anisotropic Meshes. 2010

The difference between
Equation 2.8 and 2.12 is
that the former assumes
a constant metric whereas
the latter assumes a spa-
tially varying metric.

62. Ibanez et al., First Benchmark of the
Unstructured Grid Adaptation Working Group.

2017

63. Arsigny et al., Log-Euclidean Metrics for
Fast and Simple Calculus on Diffusion Tensors.
2006

https://dx.doi.org/10.1016/j.finel.2009.06.028
https://dx.doi.org/10.1016/j.finel.2009.06.028
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.800
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.800

34 CHAPTER 2. PRELIMINARIES

Target metric

In order to interpolate new metric tensors when vertices are moved
or created, it is more convenient for mesh adaptation algorithms to
employ a continuous (vertex-valued) representation of the target met-
ric field. For this reason, we expect the mesh adaptation algorithm
to provide a set of target metrics {m;} defined at the vertices of the
input mesh. This input mesh then becomes a static background mesh
on which new metrics can be evaluated by marching through element
neighbours, locating a containing element and using barycentric inter-
polation on the vertex metrics of the containing element. For efficiency,
our mesh adaptation software retains information as to which element
in the background mesh contains every vertex in the working mesh.
Vertices created from edge splits can lie outside this background mesh
(which can happen with curved geometries). The metric at the new
point is then evaluated as the log-Euclidean average of the metrics
stored at the edge endpoints — see Figure 2.3.

2.3 Metric-conforming meshing

An element is said to be unit with respect to some metric if all its edge
lengths are unit under the metric and the metric volume of the element
is that of the ideal element (v,, for a n-simplex). A mesh is then unit
if all its elements are unit with respect to the metric.

In general, it is not possible to satisfy these conditions and they
need to be relaxed®. An element is said to be quasi-unit if its edge

lengths satisfy

1
— < Um(e) < V2, Ve € E(x).
5 Stm(0) < (x)
Let us justify the use of the quasi-unit length bounds of [1/+/2,v/2]
which is frequently used in the literature®°. In the words of Frey: the
coefficient /2 is related to the fact that an edge can be split if the lengths of

the two sub-edges minimize the error distance to the unit length as compared

(2.16)

with the initial length65. First, consider the upper bound, /max. The goal
is to set /max as close to one as possible with the constraint imposed by
Frey’s suggestion. We can therefore pose the following optimization
problem
2
fmax = arg min (a — 1) such that g(a) =2 (% - 1) —(a—1)2<0
o

Solving this optimization problem leads to g(a) = 0, therefore, {max =
V2. The lower bound of the quasi-unit range is v/2/2 since the two
sub-edges will have a length of ¢{max/2 and we want to avoid cycling
between edge refinement and coarsening in an adaptation loop.

LF

Figure 2.3: Interpolation of metric ten-
sors using a background mesh. The
background simplex %; (in shaded gray)
containing the query point p is first lo-
cated and the barycentric coordinates of
p in x;, are used to interpolate the tar-
get metrics stored at the vertices of the
background simplex. The blue edges are
those of the working mesh. After the in-
terpolation, the vertex at p retains the
information that it is contained within
Kp. This makes the search through the
background mesh more efficient since
can be used as a starting guess for sub-
sequent interpolations.

64. Loseille et al., Continuous Mesh Framework
Part I: Well-Posed Continuous Interpolation
Error. 2011

65. Frey et al., Mesh Generation: Application to

Finite Elements: Second Edition. 2008

https://dx.doi.org/10.1002/9780470611166
https://dx.doi.org/10.1002/9780470611166

2.3. METRIC-CONFORMING MESHING 35

Instead of directly controlling the volume, it is more practical to
control some chosen quality of the elements. For simplex elements, we
employ the quality measure

2/n
i) = r—2 5 € [01), @17)
ec& (k)

where B, is a normalizing factor such that the ideal simplex has
unit quality. Note that a degenerate simplex (with zero volume) has
a quality of zero. When calculating the volume and edge lengths in
Equation 2.17, the same metric m is used which ensures the quality
is bounded between zero and one. Again, in consistency with the
UGAWG, we use the metric defined in Equation 2.14 to compute the
quality in Equation 2.17.

Ideally, the quality of the simplices should be greater than 0.8% but
this is not always possible. An average simplex quality of approxi-
mately 0.8 is acceptable though, again, not always possible, especially
in the presence of a noisy target metric. A metric-conforming simplex
is a simplex whose edge lengths are in the bounds of Equation 2.16
and whose quality under the metric is greater than 0.8. An example of
a metric-conforming triangle is given in Figure 2.2. The mesh is then
said to be metric-conforming if all simplices are metric-conforming,
though it may not be possible for all elements to be quasi-unit under
the metric. In general, the edge lengths will exhibit the behaviour of
Figure 2.4 whereby the edge lengths are within the bounds of Equa-
tion 2.16 and the average edge length slightly deviates from unity.

Mesh metric

A mesh itself defines a Riemannian metric, which we denote as m .
In the same way a mesh is the union of a set of elements to cover a
domain, the mesh metric is the discontinuous set of element metrics:

my = (J my. (2.18)
KeEM

Each element metric m, can be computed using the Jacobian
A € R™" of the transformation from the reference unit-length element
to the physical element (¢):

m, = (AAt)f1 . (2.19)

For an n-simplex, it may be more convenient to compute A from a
two-step transformation:

_ -1
m, = (AA)) ' = (ALAglAgtA1>) (2.20)

V2

IS

05 1 5 2
gm@)

Figure 2.4: Typical distribution of edge
lengths for a metric-conforming mesh in
which all edge lengths are within the
bounds of Equation 2.16.

66. Loseille, Metric-Orthogonal Anisotropic
Mesh Generation. 2014

@
K -~

AW
/

Figure 2.5: Relationship between the
physical (x) and reference elements (xa
and x|) for the calculation of the
element-implied metric.

https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.10.400
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.10.400

36 CHAPTER 2. PRELIMINARIES

where A, is the Jacobian matrix of the transformation from the or-
thogonal simplex to the equilateral one (¢,) and A is that from the
orthogonal simplex to the physical element (¢). See Figure 2.5.

For n-simplices, this element metric can also be computed by solv-
ing for the n(n + 1) /2 unique values in the tensor from the n(n+1)/2
equations that result by requiring that the length of each simplex edge
computed under m, is unit in Equation 2.8. An illustration of the
mesh metric is given in Figure 2.6. This duality enables the discrete
mesh optimization problem at the heart of our adaptation algorithm
to be posed in terms of a continuous metric.

A/ Y h\% Y ‘) \/ f) Figure 2.6: Illustration of the duality be-
' ‘" tween a mesh and its metric.

(a) Mesh (b) Metric

Various methods exist to transform the discontinuous (element-valued)
mesh metric field, m 4, to a continuous (vertex-valued) onem; € C 0 (Q).
Here, we compute the continuous mesh metric by solving an optimiza-
tion problem. The goal of the optimization is to match the complexity of
the continuous mesh metric with that of the actual mesh. In particular,
the complexity of the continuous mesh metric is described by

c(mp) =) om,(x /\/detml) dx, (2.21)

KEM KeEM 3

and the complexity of the mesh is ¢(M) = |[M|v,,. In contrast to
the approximation in Equation 2.14, the integral in Equation 2.21 is
evaluated with numerical quadrature since the number of times it is
evaluated is much less than in a mesh adaptation tool. Furthermore,
since the edge lengths of the mesh under its own metric should be
unit, the objective function also employs a penalty term

p(mp) = Z sy, (2.22)

ecE(M)

with 0, = [€m;(e) > V2](fm,(e) = V2) + [lm,(e) < v2/2](vV2/2 -
lm,(e)) (note the use of the Iverson bracket). The resulting objective
function is

f(mp; M) = (c(mp) = c(M))* + p(my)*. (2.23)

2.4. NUMERICAL DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS37

This objective function may not provide an accurate calculation of the
implied metric when the edge lengths are within the quasi-unit range.
An alternative may include a volume- or quality-based term to im-
prove the implied metric. The latter is not done in this work which we
identify as a limitation.

2.4 Numerical discretization of partial differential equations

Model problem

The ultimate goal of this work is to demonstrate a fully unstructured
n = 3d + t spacetime mesh adaptation driven by the solution to a par-
tial differential equation (PDE). As such, it is appropriate to describe
our model problem and discretization mechanics.

We seek the solution u(x,t) € R to the linear advection-diffusion
equation,

ou

5 T V-(cu—vVu) =s(x,t), ¥x € Q,te0,T| (2.24)
where ¢ € R is the convection velocity, v is the viscosity, s(x, t) is the
source term and Q C RY is the domain in which we wish to solve the
equations between times t =0and t = T.

The above can be recast in a spacetime formulation:

V.- leu—f£(u)] =s(x), Ve, (2.25)

where the spacetime differential operator is V = [V,d/9t]! and the
spacetime coordinates are given by X = [x,]’ which are contained in
the spacetime domain Q=0x][0,T] C R (see Figure 2.7). The
spacetime convective velocity (¢) and diffusive flux (f;) are, respec-

é:[;], fd(u)Z[vvu]. (2.26)

tively,

In this work, Dirichlet boundary conditions are applied on the spa-
tial boundaries (9Q)) and the initial condition is specified with u(x,0).

For brevity, we will drop the hat notation in the following but it
should be understood that we are employing the spacetime formula-
tion of Equation 2.25 and solving the problem in Q.

Discretization

We will demonstrate the adaptation mechanics using the discontinu-
ous Galerkin method, which we review here.

Let u € V, with V an appropriate function space. The weak form
of the governing equations is obtained by multiplying Equation 2.25

< Limitation:

When the edge lengths are
in the quasi-unit bounds
(Equation 2.16), the opti-
mizer will only be driven
by the cost term in Equa-
tion 2.23. A volume- or
quality-based term should
be added to the objective
function to find a better
representation of the con-
tinuous metric field im-
plied by the mesh.

)

Figure 2.7: Example of a spacetime do-
main) for solving a 2d unsteady prob-
lem within a square (€2). The initial con-
dition is applied at t = 0 (the blue face)
and the spatial boundary conditions are
applied on the yellow faces. The final
time (t = T) is shown in red.

38 CHAPTER 2. PRELIMINARIES

by some test function v € V and integrating by parts over the domain,
yielding the semilinear residual R(+,-) : V x V — R:

R(u,v) = f(v) —a(u,v) =0, YoveV, (2.27)

where f(-) is a linear form obtained from the integration of the source
term and also accounts for the Dirichlet boundary conditions. The
bilinear form a(-,-) is obtained from the integration by parts of the
convective and diffusive terms.

In the finite-dimensional setting, we decompose () into a simpli-
cial mesh M = (V, T) and introduce the discontinuous finite element
space

Vip = {v €L} (Q): Op,p © @q(x) € PP(x0),Vx € /\/l} , (2.28)

where @, (x) is the g-th order diffeomorphic mapping from physical
element x to master element xy and P?(xp) denotes the complete p-
th order polynomial space on the reference element x(. Since this
work focuses on simplicial meshes, x is the reference n-simplex with
an orthogonal corner (x,). We also restrict our attention to linear
elements in this work (g = 1).

Representing the discrete solution as u,, € V}, , and taking vy, , €
Vj,,p the discrete residual operator Ry, ,(+,) : Vi, X V3, — R becomes

Rh,p(”h,p/ Z)h,p) = fh,p(”h,p) - ah,p(”h,pz vh,p) =0. (2‘29)

Equation 2.29 is linear in uy,, and we solve the resulting system of
equations using PETSC®7. Roe’s approximate Riemann solver® is used
to discretize the convective flux and the second form of Bassi and Re-
bay for the diffusive flux®. Boundary conditions are weakly imposed
by prescribing the fluxes on faces that lie on 0Q).

For four-dimensional problems, the integrals in Equation 2.29 are
approximated with the conical product of Stroud”®. Furthermore,
nodal Lagrange basis functions are used to represent the polynomial
space of the solution.

2.5 Mesh Optimization via Error Sampling and Synthesis

The adaptation algorithm used in this work is an extension of the Mesh
Optimization via Error Sampling and Synthesis (MOESS) framework
of Yano3 to four-dimensional problems. The method relies on an error
localization method such that error models can be synthesized from
sampled data and optimized to drive the creation of the next mesh in
the adaptation sequence.

In general, the mesh adaptation problem is posed as: find the optimal
mesh M* with a complexity no greater than cy that minimizes the error € in

67. Balay ef al., PETSc Users Manual. 2017

68. Roe, Approximate Riemann Solvers,
Parameter Vectors, and Difference Schemes. 1981

69. Bassi et al., GMRES Discontinuous Galerkin
Solution of the Compressible Navier-Stokes
Equations. 2000

70. Stroud, Approximate Calculation of Multiple
Integrals. 1971

3. Yano, An Optimization Framework for
Adaptive Higher-Order Discretizations of Partial
Differential Equations on Anisotropic Sinplex
Meshes. 2012

https://http://www.mcs.anl.gov/petsc

2.5. MOESS 39

the output of interest. Mathematically,

M* =arg min (M), suchthat ¢(M) < co. (2.30)
M
Unfortunately, this discrete optimization problem is intractable. How-
ever, the duality between the mesh and its metric can be used to recast
the optimization as a continuous one for the metric field:

m”* = arg min £(m), suchthatc(m) < cp. (2.31)
m
In this light, the metric can be optimized instead of directly optimizing
the mesh. With this metric, a metric-conforming mesher would then
return the next mesh in the adaptation sequence. In order to compute
this optimal metric, we need to develop techniques for estimating and
modeling the error in the current mesh.

Error estimation

In the most general setting, our output of interest is computed by some
functional J(-) : V. — R. The true error in the discretization is

Etrue = H(u) - 3h,p(uh,p)- (2'32)

where Jj,,(-) : V4, — R calculates the discrete version of the out-
put. Since the exact output is not known, the dual-weighted residual
(DWR) method is used to estimate Equation (2.32). This method, pro-
posed by Becker and Rannacher”’, weights the residual operator by
the solution to the adjoint of the governing PDE:

8true = R(uh,pr lP), (233)

where € W = V +V),, is the exact solution to the dual (adjoint)
problem,

Ryl) (0,9) =~ lw0,) (@), Y € W, (239)

where R} [u,up](-,-) : Wx W — R and gzrp[u,uh,p](-) : W = R
are the mean value linearizations of the residual operator and output
functional, respectively, defined by

_ 1
R;Z,p[u, up,p|(w,0) = /o R;l/p [0u + (1 —0)uy,] (w,v) d6, (2.35)

_ 1
Bpln i)@) = [0,00+ (1= 0w,)(@)do, (@36)
where R}) 2](-,-) and g}, » [z](-) denote the Fréchet derivative of Ry, (-, -)

and gy ,(-) with respect to the first argument evaluated about the
state z.

The general setting for
error estimation is pre-
sented here because the
output functional consid-
ered in Chapter 4 is non-
linear.

71. Becker et al., An Optimal Control Approach
to A Posteriori Error Estimation in Finite
Element Methods. 2001

< Note:

For our linear PDE:

R;’l,p[ul uh/p](wr ll’) = _alz,p(w/ l/])

which is the transpose of
the bilinear form ay, (-, -).

40 CHAPTER 2. PRELIMINARIES

Since the exact adjoint solution is unknown, an approximate solu-
tion, ¥y, 11 € Vi, p 11, satisfying

Rl[“h,p}(vh,p+1r l/)h,erl) = 73;1,;9 [”h,p](vh,erl)f Vvh,erl € Vh,p+1/
(2.37)
is obtained where M is fixed but the solution space of the adjoint equa-
tion is enriched to p + 1; note this is necessary to ensure the enriched
residual operator acting on a prolongated version of uy, , to Vj, 1 does
not vanish. The DWR estimate employed in this work thus takes the
form

Etrue A Rh,p(uh,p/ lljh,erl)- (2.38)

This error can be localized over each element « by restricting the eval-
uation of Equation (2.38) to each element,

e = |Rh,p(uh,pr Yn,p+1 lic)]- (2.39)

This gives an indication of the local elemental error and is useful in
driving an adaptive process. In Chapter 4, we will refer to Equa-
tion 2.38 as the error estimate and will be simply denoted by €. The er-
ror indicator will refer to the sum of the element errors of Equation 2.39
and will be denoted by &;:

&= Z M- (2.40)
KxeM

Error Sampling

Equation 2.39 gives a measure of the local error over an element x(€
M due to the discretization. Each element, %, can be further split
and the error over each child element can be recalculated. Our local
sampling method for discontinuous Galerkin discretizations consists
of extracting the parent simplex along with its immediate neighbours
(opposite each facet). One by one, each edge of the parent simplex
is then divided at its midpoint and the solution is recalculated within
the local split mesh. During this solution process, Dirichlet boundary
conditions are applied to the DOF of the neighbouring simplices such
that only the solution of the split elements of the original parent are
recomputed. The implementation details for this local split procedure
are provided in Appendix C. The edge split configurations used for
n = 2d are shown in Figure 2.8.

The implied metric associated with each split configuration is taken
as the log-Euclidean mean (Equation 2.15) of the implied metrics of
the split elements and the error introduced by the split elements is
summed to complete the set of 11; metric-error pairs:

{mi/ ’71(1'} . (2'41)

(d) Split 3

Figure 2.8: Split configurations used to
sample the error over a triangle for a p =
3 discontinuous Galerkin discretization.

2.5. MOESS 41

Error model synthesis

The metric-error pairs are then used to construct a model of the error
as a function of the metric field. This model is constructed in terms of
the step matrix, s, which represents the difference between two metric
tensors. In the context of the discrete set of sampled data, these tensors
are computed from m,, and my, as

sx; = log (m;(]l/zm,cim;olﬁ) , i=1,...,n;. (2.42)

A linear model is then constructed from the #n; metric-error samples,

fx(s) =log (n(s)/n0) =1« :s, (2.43)

where 1y is referred to as the rate matrix. A linear regression of the
sampled data is used to determine r.

Over an element x, the resulting local error model can finally be
written in terms of the average element step matrix s, as

x(sx) = o exp(tr(rnsi)) + £ [[8clB+ ¥ 18 —8ullf | @44)
ec& (k)

where 5.y denotes the trace-free portion of the step matrix and ||-||F
is the Frobenius norm. The Frobenius norm penalties in Equation 2.44
are introduced to control the trace-free portion of the step matrix.

In general, we optimize the vertex-valued step matrices, therefore,
the average step matrix over the element s, is computed from

1
Sk = ——— S
WL
The error in the mesh is then the sum of the local element contribu-
tions.

Metric optimization

The last step in an adaptation iteration is to optimize the Rieman-
nian metric field that is passed to a metric-conforming meshing algo-
rithm. Instead of optimizing the metric field, Yano suggests optimizing
the vertex-valued field of step matrices {s,},.). The optimization of
the step matrices is performed using the gradient-based approach of
Kudo?>.

An important property of this optimization is the lower and upper
bounds placed on the step matrix entries. Since the local elemental
error model is only assumed reliable for metrics that are similar to
the current metric, the entries of these step matrices are individually

72. Kudo, Robust Adaptive High-Order RANS
Methods. 2014

42 CHAPTER 2. PRELIMINARIES

bounded by 2log(h.ef); we refer to h as the refinement factor. This
places bounds on the entries of the step matrices as

Isij| < 2108 hef. (2.45)

This refinement factor controls how large the mesh is allowed to grow
(or shrink) from one adaptation iteration to the next. Since the er-
ror model is constructed from local edge splits, we often set h.of = 2.
Lower values of the refinement factor will result in less aggressive
adaptation iterations at the expense of slower convergence to the opti-
mal mesh for a given cost.

2.6 Summary

This chapter introduced the fundamentals of meshing, numerical dis-
cretizations and the mechanics used to perform PDE-driven mesh adap-
tation. We are now ready to describe our algorithm for adapting four-
dimensional meshes.

CHAPTER 3

FOUR-DIMENSIONAL ANISOTROPIC MESH
ADAPTATION

It’s all about the geometry.

— Bob 4 Length, volume and quality:

In this chapter, any men-

L4 tion of geometric quanti-
ties such as length, wvol-
3.1 Bllegi’OLH’ld ume or quality s}}ould be

understood as being mea-

sured under the input
This chapter develops a mesh adaptation algorithm which takes ad- metric field unless stated
vantage of the expected limits on the incoming metric edge lengths. otherwise.
Furthermore, the mesh adaptation procedure is treated in a dimension- ¢ | i ot a1, Unigue Covity-Based
independent manner. This differs from existing software implementa- ~ Operator and Hierarchical Domain Partitioning
. 6 . . . for Fast Parallel Generation of Anisotropic
tions such as feflo.a%®, EPIC5°, refine>’, gamanic3d73, pragmatic’4, Meshes. 2017

7 76 . T .
Omega—h 3 and MMG Wthh are spec1ahzed fOI' elther Zd or 3d mesh 50. Michal et al., Anisotropic Mesh r"niupmfimz

adaptation. The closest software implementation for dimension- through Edge Primitive Operations. 2012
independent mesh adaptation is MTC (Mailleur Topologique en C) by si. Park et al., Parallel Anisotropic Tetrahedal

Adaptation. 2008

Thierry Coupez>> and his student Cyril Gruau>7. Though dimension-

independent in theory, Gruau’s demonstrations focus on three- 73. George, Gamanic3d, Adaptive Anisotropic
Tetrahedral Mesh Generator. 2002

dimensional applications and some very simple four-dimensional metric-
. . . . 74. Rokos et al., A Thread-Parallel Algorithm
conforming cases. In fact, these four-dimensional demonstrations were f anisotropic Mesh Adaptation. 2015

restricted to the special case of the Euclidean metric. Here, we strive o .
75. Ibanez, Conformal Mesh Adaptation on
to demonstrate four-dimensional metric-conforming mesh adaptation Heterogencous Supercomputers. 2016
with more general metrics fields. 76. Dobrzynski, MMG3D: User Guide. 2012
Local mesh modification operators are traditionally viewed explic- R o .
. . . 55. Coupez, Génération de Maillage et Adap-
itly as edge splits, edge collapses, edge swaps, face swaps, vertex smoothing, tation de Maillage par Optimisation Locale.

2000

etc. In fact, these mesh modification operators are all special cases
. o g _ 57. Gruau, Metric Generation for Anisotropic
of the more general CaVlty operators, WherEby an ex1st1ng set of el Mesh Adaptation with Numerical Applications to

ements is removed and a new set of elements is inserted. As such, Material Forming Simulation. 2005

https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://http://arxiv.org/abs/1308.2480
https://http://arxiv.org/abs/1308.2480
https://https://hal.inria.fr/hal-00681813

44 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

our dimension-independent method is a fusion of the star operator of
Coupez>> with the cavity operator of Loseille3.

Furthermore, it is unclear in the literature how to best schedule local
operators to achieve a metric-conforming mesh. Each of the aforemen-
tioned software implementations suggest a schedule but provide little
empirical justification for the selection. Loseille’s®® recent work pro-
vides a general overview of the mesh adaptation schedule and makes
an important suggestion that point insertions (via edge splits) should
be done so long as no short edges are created in the process. Other
work in local operator scheduling is that of Klingner and Shewchuk””
whereby mesh operators are compounded to achieve higher quality
tetrahedra by disregarding the overall computational cost of the algo-
rithm. Here, we provide the details of our mesh adaptation schedule
and perform some experiments to highlight important features of our
algorithm.

The next sections develop and justify the design and implementa-
tion of the dimension-independent local operators. Next, we highlight
the geometry hierarchy checks which are necessary to ensure the va-
lidity of the dimension-independent operators. We then discuss the
scheduling of the local operator and justify the chosen schedule of our
mesh adaptation algorithm. Finally, we demonstrate the developed
mesh adaptation algorithm on benchmark three- and four-dimensional
cases.

3.2 Dimension-independent local operators

Given an initial n-simplicial mesh M = (V,T') of some domain () C
R", a local operation on M consists of the transformation of its topol-
ogy T:

T = TR\ CX(f) U B (p,ack) (3.1)

where the superscripts represent the sequence of meshes at each ap-
plication of the cavity removal, C¥(f), and the insertion, B¥(p,aCk).
Ck(f) denotes the set of cavity elements about a j-dimensional facet
f € T* which might be enlarged to ensure topological and geometric
validity. This set of cavity elements can be written as

ck(f):{x\fcx, erTk}. (3.2)

Often f is chosen from the set vertices (as integers) or edges of T, as
in the work of Gruau and Coupez7®. For a vertex v and edges e; and ey,
the corresponding cavities C(v), C(e1) and C(e;) are shown in the blue
triangles of Figure 3.1. The boundary of the cavity, dC*(f), is outlined
in red. Note that two possible cavities are shown in Figure 3.1(b) about
edges e; and e».

77. Klingner et al., Aggressive Tetrahedral Mesh
Improvement. 2007

< Four-dimensional domains:

The hierarchical descrip-

tion of the domain geom-

etry is a necessary input

Aodor to our algorithm. The
& ’ interested reader is urged
! to study Appendix A
to understand how the
geometry hierarchy of

our four-dimensional
domains (here, the unit
tesseract) are constructed.

<1 Topological operation:

It is important to view
Equation 3.1 as an opera-
tion on the topology of the
mesh. The full operation
on the mesh M consists
of this topological opera-
tion as well as a (possible)
modification of its vertices
V such as a vertex inser-
tion, removal or modifica-
tion of the coordinates.

78. Gruau ef al., 3D Tetrahedral, Unstric-
tured and Anisotropic Mesh Generation with
Adaptation to Natural and Multidomain Metric.
2005

https://http://graphics.cs.berkeley.edu/papers/Klingner-ATM-2007-10/
https://http://graphics.cs.berkeley.edu/papers/Klingner-ATM-2007-10/
https://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2004.11.020
https://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2004.11.020
https://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2004.11.020

3.2. DIMENSION-INDEPENDENT LOCAL OPERATORS 45

--

(a) Cavity about vertex v. (b) Cavities about edges e; and e;.

The insertion operator, B¥(p,dCk), is obtained by connecting some
(possibly new) vertex p with the set of (n — 1)-dimensional facets in
aC* which do not contain p. Mathematically,

B¥(p,act) = {x[x = {p}ug gcac’, p¢gf. (3)

where g is a (1 — 1)-dimensional facet on the boundary aC*. The re-
insertion vertex p is often chosen from the set of vertices in the cavity
(though Loseille allows it to be outside the cavity).

£\

(a) Valid insertion for the cavity (b) Valid insertions for the cavities
of Figure 3.1(a). of Figure 3.1(b).

Superscripts will now be dropped for brevity. Following the exam-
ple of Figure 3.1, possible insertions are shown in yellow of Figure 3.2.
Note that in Figure 3.2(a), the vertex p was selected as the re-insertion
vertex because the re-insertion vertex 4 would create an invalid mesh.
To see this, observe that not every facet in the boundary is visible to g.
As a result, Loseille proposes to iteratively enlarge the cavity until g is
visible to the boundary of the cavity. The set of re-insertion elements

Figure 3.1: Identification of a set of cav-
ity elements. Elements in blue form
the cavities C(v), C(e1) and C(ep). The
boundaries of each cavity are outlined in
red.

< Re-insertion vertex:

When we refer to the
re-insertion vertex p, it
should be clear that this
is an integer identifier into
the vertices V. The coordi-
nates of p are V(p).

Figure 3.2: Selection of the re-insertion
vertex to produce valid meshes. The set
of insertion elements is shown in yel-
low which is obtained by selecting a ver-
tex and connecting it to the boundary
of the set of cavity elements, shown in
red. After extracting the set of cavity el-
ements C(e;), possible re-insertion can-
didates include vertices p, g, r and s.
However, candidates g and s create in-
valid meshes. Also observe that select-
ing either p or r as the re-insertion ver-
tex maintains the original configuration
of Figure 3.1(a). In comparison, any of
the re-insertion vertices s, t, u or v pro-
duce valid meshes when connected to
the boundary of the cavity C(ep).

46 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

should satisfy a volume criterion:

K

——
v(conv(V({p}Ug))) >0,VgedC, p &g (3-4)

K

This volume can be computed with exact geometric predicates, which
we describe in Appendix C.

Similarly, Coupez enlarges an initial set of cavity elements C(f) to
include those simplices in 7 which are in the closure of the vertices of
the original cavity NV (C(f)), where N/ (+) retrieves the set of vertices (as
integers) in the provided set of elements. Mathematically, the closure
is written as

C(f) = {x[r Cc N(C(f)}, (3:5)

Combined with his minimum volume principle, Coupez initially demon-
strated this guarantees the topological validity of the mesh5>. The
initial proof was incomplete and later formalized in the thesis work of
Cyril Gruau®?, a student of Coupez. This validity check is elaborated
upon in the following sections.

Maintaining a valid mesh in theory

To ensure the insertion B(p,dC) is a valid mesh topology, Gruau pro-
vides the following lemma along with a simple proof in Proposition
2.2 of his thesis>’.

Lemma 1. Let F be a boundaryless mesh topology (0F = @) with a topolog-
ical dimension of n — 1. The insertion B(p, F) is also a mesh topology (with
topological dimension n) for any vertex p and the boundary of the insertion

is F,ie, 0B = F.

Finally, we need to ensure the application of a local operator pro-
duces a valid mesh topology. In fact, this is true provided the two
conditions in the following lemma are satisfied.

Lemma 2. Let T be a mesh topology and C(f) be a set of elements to remove
from T about a facet f. Let B(p,dC) be a set of elements to be inserted in the
mesh obtained from Equation 3.3 with a vertex p. Furthermore, let IC be the
set of n-simplices in T with exactly n vertices in the vertices of C:

K={x|xnN(C)|=nVkeT}. (3.6)
T\ C(f)UB(p,oC) is a mesh topology if
1. dC is a mesh topology and

2. the faces of oC are the faces of KC (with vertices in N'(C)).

<1 Formation of a physical element:

Recall the distinction be-
tween the topological el-
ement x and the physical
one k. Here, we are check-
ing the volume of the
physical element, formed
from the convex hull of
the vertices in {p} U g.

55. Coupez, Génération de Maillage et Adap-
tation de Maillage par Optimisation Locale.
2000

57. Gruau, Metric Generation for Anisotropic
Mesh Adaptation with Numerical Applications to
Material Forming Simulation. 2005

3.2. DIMENSION-INDEPENDENT LOCAL OPERATORS 47

The complete proof can be found in Gruau’s thesis®”. Roughly
speaking, Condition 2 means that the boundary of the cavity, as seen
from the mesh remaining after cavity removal, matches the boundary
of the inserted elements. Think of K as the set of elements on the other
side of the cavity, see Figure 3.3.

Gruau’s proof is quite complicated, with the clearest version written
in French. Though we do not claim the following as our own work,
we sketch the proof below for two reasons. First, it provides a useful
translated reference of the original work of Gruau. Second, it high-
lights an important feature that can be used to check for validity in
practice.

Proof. Sketch of Gruau’s proof that a local operation maintains a valid mesh.
To show that the operation of modifying 7 by removing the cavity
C(f) and inserting B(p,dC) maintains a mesh topology, we need to
satisfy both properties of a mesh topology (Definition 1). Before doing
so, let us modify some notation for brevity and clarity: the removed
cavity will now be represented as C and the insertion will be denoted
as B.

The first part of Definition 1 requires that every face of 7 \ C U B
is counted no more than twice.

Assume there exists some face F in 7 \ C U B which is counted
more than twice. Now, 7 \ C is clearly a mesh topology since T
is assumed to be a mesh topology and the removal of elements in C
clearly maintains a mesh topology. We also know that B is a mesh
topology by Lemma 1. With 7 \ C and B both being mesh topologies
(in which every face is counted no more than twice), then for F to be
counted more than twice, it must be a face of both.

Now, let k be an element of 7 \ C which has F as a face (think of «
as an element in 7 on the other side of the cavity). Since ¥ ¢ C and F
must be a subset of N (K), then x € K, meaning F € oC.

Since we know F € dC, then either F € 0T or F € 9(T\C). But F
always touches at most one element of 7 \ C since it is a mesh topol-
ogy! Furthermore, Lemma 1 states that 03 = dC so F also touches at
most one element of 3. Thus F cannot touch more than two simplices.
This contradiction means all faces of 7 \ C U B are counted no more
than twice.

The next thing to prove is that 97 = 9(7 \C U B). Gruau breaks this
down into proving that 07 C o(T\CUB) Ad(T\CUB) C 9T.

To prove the first side, consider a face F of the boundary of the
mesh 97 . Since 7T is a mesh topology and F is on the boundary, then
F touches a single element « of 7. By considering the two cases (1)
k ¢ C and (2) ¥ € C, Gruau demonstrates that for (1) x is a unique
element of 7 \ C U B and for (2) that since « is unique in C, then F is

Figure 3.3: Terminology of Lemma 2.
The cavity C is shown in grey with the
cavity boundary in blue. The triangles in
light red are in K. The yellow triangles
are in the remainder of the mesh and are
not in K.

<! Warning!
Heavy material ahead!
bk The most important thing
4’ you need to remember
i from the discussion is that

the mesh is valid if every
element is unique. Click
to skip.

48 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

a face of some other element x’ which is unique in 7 \ C U B. This
means F is in both 97 and 97 \C U B.

To prove the second side, Gruau now considers a face F of the
boundary of the mesh after the operation, F € 9(7\C U B). Again,
by considering a unique element x € 7 \ C U B, there are two cases to
consider: (1) k ¢ B and (2) x € B. If x is not in B (1), then it must be in
7 \ C. This means x € T and hence F is on the boundary of 07". Now,
if x € B (2) and x being unique, then F is on the boundary of B. Since
the boundary of B is the boundary of C by Lemma 1, then there must
also be a unique element of C with F as a face, meaning this unique
element is in 7 (since C C 7). Thus the boundaries match. O

Again, the reason the proof was presented above is because it high-
lights an important component that we can use, in practice, to check
for validity. Notably, that every element created during the local oper-
ation is unique. This will be elaborated upon in the next section.

Obviously, we do not want 07 = 9 (7 \C U B) since we would like
to modify the topology of the geometry discretization. In practice,
however, we can close the mesh such that 97 = @ and thus ensure that
the resulting mesh from the local operation retains an empty boundary.

Maintaining a valid mesh in practice

The first thing we do when checking for the validity of a local operator
is to check whether the proposed re-insertion vertex is visible to the
boundary of the removed cavity. This allows us to geometrically filter
out operators that would create invalid meshes.

To topologically guarantee the mesh is valid upon application of
each local operator we close the mesh such that it is without boundary,
similar to the work of Coupez and Gruau. To achieve a mesh with-
out boundary, a ghost (fictitious) vertex is created for each connected
boundary. This vertex is then connected to the boundary facets of the
original mesh and the resulting (ghost) simplices are appended to this
incoming mesh. Without loss of generality, consider a mesh with a
single connected boundary, such as that of a n-cube with no interior
holes. Denote the ghost vertex as vy and the incoming mesh as 7y. The
closed mesh is obtained by defining a set of ghost simplices:

Te = {{vo} Ug| Vg € 970} (3.7)

The full topology of the mesh now becomes the union of the simplices
in the incoming mesh with the ghost simplices:

T=ToUT;. (3.8)

By working with a closed mesh, we ensure that 97 = @ and should re-
main so upon application of each local operation. If the mesh were not

3.2. DIMENSION-INDEPENDENT LOCAL OPERATORS 49

closed, then 97 # @ and we would have no rigorous way of knowing
whether the mesh, after the application of a local operation, is valid.

Furthermore, as remarked by Gruau, Condition 2 of Lemma 2 may
not be satisfied, even for valid mesh topologies. This is quite restric-
tive and suggests this condition should not be directly used to check
for mesh validity. Instead, observe that an important byproduct of
Gruau’s proof (outlined above) is that every element in the resulting
mesh topology is unique. As a result, we check that every element
created by the insertion is unique in 7. Directly checking that every
inserted element is unique through an exhaustive search of 7 \ CUB
would be too costly to be used in practice. Instead, we propose the
following and only check a subset of the mesh.

Proposition 1. Let ‘H denote the set all elements in T with the proposed
re-insertion vertex p as a vertex. Thatis H = {x | p C «,Vx € T}
Now, let the remainder R denote the set of all members of H that are not in
the proposed cavity C: R = {x |x € H A x & C }. See Figure 3.4 for
an illustration of this terminology. If

card(x) =1, Vk € (B(p,oC) U R), (3.9)

then card(x) = 1, Vk € T \ CUB. That is, every inserted element is unique
if it does not appear in the set of elements in the ball of p leftover after the
cavity removal.

Proof. Assuming every element of the original mesh 7 is unique be-
fore the operation, then 7 \ C also has unique elements, as does
T\(C UR)(inceC C Tand R C T). Suppose the propo-
sition is false, then 3 x* with card(x*) > 1in 7 \ C U B. However,
observe that any element ¥ € B U R must contain the re-insertion
vertex p. Furthermore, no element in 7 \ (C U R) can contain the
vertex p. Thus if * is single-counted in B U R, then it cannot appear
in 7\ (C U R) since it would need to contain the vertex p. We thus
have a contradiction and «* must also be uniquein 7 \ C U B. O

Conversely, given a valid mesh topology without boundary, then ev-
ery element is unique since every face must be counted exactly twice.

To ensure our implementation matches the aforementioned theory,
we employ a data structure that tracks the simplex-to-simplex neigh-
bour relations. Observe that because the mesh is closed, then every
n-simplex is adjacent to n + 1 simplex neighbours. Upon application
of the cavity operator, the faces on the boundary of the cavity, as seen
from the remaining mesh, are first cached. Next, the boundary of the
insertion operator is computed and the neighbour-relations are up-
dated by progressively removing the facet in the cache that exists in
the boundary of the insertion operator. After the operator terminates,
the cache should be empty, which we strictly enforce.

Figure 3.4: Terminology of Proposi-
tion 1. The set of inserted elements in
B(p,9C) do not already exist in the re-
mainder R which is described by the set
of red triangles attached to vertex p. This
may seem impossible in 2d but it can oc-
cur in higher dimensions.

50 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

Recovery of common mesh modification operators

The advantage of employing the cavity-insertion framework is that,
with the appropriate selection of the cavities and re-insertion vertices,
all other mesh operators can be recovered. In fact, Figures 3.1(a) and
Figures 3.2(a) are the sequence of steps taken to perform an edge
collapse (or vertex removal). Similarly, the sequence of steps in Fig-
ures 3.1(b) and Figures 3.2(b) show two possible edge swaps. Ta-
ble 3.1 gives the cavities and re-insertion vertices which recover com-
mon mesh modification operators.

Operator j Facet f Vertex p(x)
collapse 1 vertex vy v1(x1)
split 1 edge e = (vy,v1) s (Xs)
edge swap 1 edgee= (vo,v1) p(xp) € N(C)

facet swap d—1 simplex f p(xp) € N(C)
smooth 0 vertex p p(Xp)

In addition to its mathematical rigour, the cavity framework further
benefits from a simple software implementation. The latter advantage,
however, is lost if cavities are allowed to enlarge. Instead, when edge
collapses or splits are rejected, we use swaps to weave out of restrictive
geometric and topological configurations which may be causing the
rejection. In general, this may not guarantee the operator is ultimately
applied but it increases the chance of generating a higher quality mesh.
We elaborate on this concept when discussing the schedule of the local
operators.

The coordinates for the re-insertion vertices can also be modified
during the local operation. For collapses and swaps, the vertex coor-
dinates are not modified and simply fixed at the coordinates of the
selected re-insertion vertex. For edge splits, the re-insertion vertex in-
herits the coordinates of the midpoint of the edge upon which the split
occurs (x; in Table 3.1). For vertex smoothing, the new coordinates are
computed from the local edge lengths surrounding the vertex:

Xp=xp+w Y (1 - Efn(e)) exp(—éfn(e))e (3.10)
ec&(p)

where &(p) is a selected set of the edges that surround the vertex p and
e is the unit vector along that edge. The relaxation factor is selected
as w = 0.2, similar to the inspiring work of Bossen and Heckbert3°.
For interior vertices, € is the full set of edges connected to a vertex.
However, for vertices on geometric entities, £ is a subset of these edges.
This subset is defined from the vertex-to-geometry metadata which is
described below.

Table 3.1: Choice of re-insertion vertices
(with associated coordinates) for local
operators. The cavities are obtained us-
ing Equation 3.2 about the j-dimensional
facet f listed in the second column.

30. Bossen et al., A Pliant Method for
Anisotropic Mesh Generation. 1996

3.3. THE IMPORTANCE OF THE GEOMETRY METADATA 51

3.3 The importance of the geometry metadata

It is critical to check whether the proposed operator violates the dis-
cretization of the geometry. To perform this check, we strictly enforce
that all vertices are tagged with geometry metadata. This must be the
lowest-dimensional geometry entity. For example, a vertex on a geome-
try Edge is also on Faces (and Volumes for a tesseract geometry) but
the associated geometry for this vertex must be the Edge. For interior
vertices, this geometry entity is empty (D).

A common operation in the mesh adaptation algorithm is to deter-
mine which geometry entity a facet lies on. For a j-dimensional facet
f C T, denote the geometric entities of the vertices of f as {go},c -
Now, define the set of parents of a geometry entity g as the set of all
geometry entities higher in the geometry hierarchy G:

P(g)={h|g=h VYhegG}. (3.11)

For each vertex of f, we have the set of parents {P(g0)},cs. The ge-
ometry entity of this facet g5 is computed from the lowest-dimensional
member of the intersection of all these parents. Denote all common
parents as Gy:

G = P(g0). (3.12)

vef

The geometry entity on which this facet lies is then

g = arg min dim(g). (3-13)
8€Gy
Of course, gf can be empty even if g, # @, Vv € f. For curved geome-
tries, gr can be nonempty despite f being an interior facet of the mesh
(think about a concave geometry near a mesh boundary). The closed
mesh is handy in treating this scenario. Every facet on a geometry
entity must be adjacent to a ghost simplex. That is,

C(f) € Ty where C(f) is from Equation 3.2 (3.14)

for facets on geometry discretizations.

We are now equipped to check whether a mesh operator violates the
geometry discretization. In the following, assume the full geometry
hierarchy is denoted, as a partially ordered set, by G.

For an edge collapse with edge e = (v, v1), if g # @, the removed
vertex vg must be higher in G than v;. That is go;, = gv,-

When swapping an edge e = (vg,v1) with a re-insertion vertex p,
the geometry of the re-insertion vertex g, must be lower than (or equal
to) ge: §p = . Note that if dim(g,) = 1, then the swap is rejected
because we do not want to swap along a geometry Edge.

< Warning!
bk
& The days of meshing with-

out a geometry are over!

The function dim returns
the topological dimension
of the entity, i.e., zero for
a Node, one for an Edge,
two for a Face, etc.

52 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

For straight-sided domains, a split along an edge e always creates
a valid insertion, both geometrically and topologically. However, to
avoid mistakes in subsequent mesh operations, the created vertex must
be tagged with g., the geometry entity of the edge being split. When
adapting a mesh within a curved domain, the created vertex needs to
be placed on g, and the cavity, C(e), may need to be enlarged to sup-
port this insertion. We note this is the only time cavities are allowed
to enlarge. This enlargement is done according to the algorithm of Lo-
seille®, in which the original cavity is iteratively enlarged by stepping
into those facets which cannot "see" the inserted vertex.

As hinted in the last section, a subset of the edges connected to a
geometry vertex p are used to smooth the vertex coordinates. This
subset is taken as the set of all edges such that the geometry attached
to the opposite vertex g is lower than (or equal to) the geometry of
vertex p: ¢; = gp. Thus vertices on straight-sided geometry entities
are smoothed along the entity. For curved geometries, this should be
performed in the parameter space of the corresponding entity, but that
is left for future work. At the current time, the new vertex coordinates
are simply placed on g, through an inverse evaluation.

3.4 Scheduling the local operators

The local operator schedule is inspired by the work of Loseille5*.

However, some changes were made in an attempt to improve the met-
ric conformity of the final mesh.

For reference, Loseille proposes to first perform collapses and splits
to create a unit mesh, followed by swaps and smoothing to optimize
the mesh quality. An important feature of Loseille’s work is to ensure
that no short edges are created during any edge split operation as
this would require another pass of the collapse operator. Building
upon this idea, we investigate the idea of interleaving swaps within
the collapse and split operators to weave out of restrictive (geometry-
or visibility-related) topological configurations.

The operator schedule, listed in Algorithm 3.6, is composed of three
main stages. The first stage consists of targeting edges longer than ¢
(typically, 9 = 2) in the metric space whereas the second stage targets
edge lengths longer than v/2. We found this necessary in an attempt
to avoid overshooting the number of elements in the adaptation pro-
cess. Performing two iterations of splits and collapses in each stage is
motivated by the fact that restrictive topological configurations might
cause an operator to be rejected on a first pass, but a global pass of
the swap operator may be helpful in weaving out of these configura-
tions before attempting another sub-stage of collapses and splits. In
addition, the swap operator has been directly interleaved within the

< Vertices on geometry entities:

A vertex can be placed
on a geometry entity
by projecting the vertex
coordinates to the given
entity or by performing an
inverse evaluation whereby
the closest point on the
geometry entity (relative
to the original vertex
coordinates) is found
through an optimization
procedure. This closest
point then forms the
coordinates of the vertex.
Alternatively, local oper-
ators can be performed
in the parametric space
of the geometry entity,
thereby obtaining the ver-
tex coordinates by direct
evaluation. Here, we use
inverse evaluation.

56. Loseille et al., Unique Cavity-Based
Operator and Hierarchical Domain Partitioning
for Fast Parallel Generation of Anisotropic
Meshes. 2017

56. Loseille et al., Unique Cavity-Based
Operator and Hierarchical Domain Partitioning
for Fast Parallel Generation of Anisotropic
Meshes. 2017

66. Loseille, Metric-Orthogonal Anisotropic
Mesh Generation. 2014

< Notation reminder:

In the algorithms that
follow, remember that a
topological element is de-
noted by ¥ € 7 whereas
a physical one is denoted
by x € M = (V,7).
We will often interchange
between a topological ele-
ment x and its associated
physical one .

https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.10.400
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.10.400

3.4. SCHEDULING THE LOCAL OPERATORS 53

split and collapse operators to immediately weave out of these restric-
tive configurations. Before a swap is accepted, the inserted topology is
checked to ensure the current minimum and maximum edge lengths
do not get worse with the application of the swap. This ensures the
edge length bounds can only improve during the mesh adaptation
procedure.

Passes on the swap operator are divided into two target qualities,
first targeting simplices of quality less than 0.4 and next targeting those
of quality less than 0.8. Since there will be fewer simplices with quality
< 0.4, swaps can be attempted recursively until no change is made to
the mesh. However, there may be several simplices with quality < 0.8,
therefore, the global loop over edges on Line 2 of Algorithm 3.6 is lim-
ited to five iterations. All other sub-stages are performed recursively,
i.e., until no further operator in the sub-stage can be performed.

Note that the same swap kernel, described in Algorithm 3.3 is used
by the passes of collapses and splits when these operators are rejected
(Algorithms 3.5 and 3.4, respectively) as well as the global swap pass
(Algorithm 3.2). The swapout parameter, which is an input to both
the split and collapse algorithms, is used to control whether swaps are
attempted when these operators are rejected.

Collapses always target edges which are shorter than v/2/2, how-
ever, splits more generally target edges that are longer than some
target length /;. As will be seen in the next section, the ability to
parametrize splits in terms of a target length is desirable in order
to control the number of simplices generated by the adaptation algo-
rithm. Since edge splits are always performed after a call to the edge
collapse algorithm, edges on geometry entities are prioritized in each
edge split pass. The reason for this decision is because the mesh will
automatically be at its coarsest following the collapse algorithm, thus
edge splits requiring a geometry projection will be more likely to be
accepted without cavity enlargement.

The split operator accepts an additional parameter, fy.s, which is
referred to as the degree-of-freedom (DOF) control factor. This pa-
rameter was introduced, particularly for 44 applications because upon
the insertion of a single vertex, the number of pentatopes grows quite
large. In 2d the total number of triangles is increased by 2 whereas
in 3d, assuming the ball of a vertex is roughly the shape of an icosa-
hedron798°, the total number of tetrahedra increases by six or seven.
In 4d, we have experimentally observed the number of pentatopes at-
tached to an edge can be on the order of 15-20, which means 15-20
new pentatopes are created upon the insertion of a single vertex. As a
result, the DOF-insertion factor, fq¢ is introduced to control the met-
ric volume of the inserted simplices. For the inserted cavity B, we
require |B| ~ vm(B)/va. That is, the number of simplices expected

< Remember:

Cavities are only al-
lowed to enlarge during
splits along geometry
entities. But if this en-
largement causes vertices
to be deleted, the split is
rejected.

79. Caplan, An Adaptive Framework for High-
Order, Mixed-Element Numerical Simulations.
2014

80. Huerta et al., Efficiency of High-Order
Elements for Continuous and Discontinuous
Galerkin Methods. 2013

< Increase in DOF upon insertion:

For a discontinuous
Galerkin discretization of
order p, each pentatope
accounts for (p +1)(p +
2)(p +3)(p + 4)/24 DOF
in the mesh. Even for
a linear discretization
(p = 1), the number
of DOF is increased by
~ 100 (assuming 20 new
pentatopes are created)
which means we need to
be very certain about a
decision to insert a vertex.

https://dx.doi.org/10.1002/nme.4547
https://dx.doi.org/10.1002/nme.4547
https://dx.doi.org/10.1002/nme.4547

54 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

by the metric volume should be approximately equal to the number
of simplices inserted. In practice, this condition is relaxed by allow-
ing |B| < fqofvm(B)/va so as to not be too restrictive with insertions.
We do not impose this criterion in 2d and 3d since the number of in-
serted simplices is not as high as it is in 44, in which we set fg.¢ = v/2.
In the next section, we will examine how this factor impacts metric
conformity as well as the number of simplices in the mesh.

The local vertex smoothing procedure is listed in Algorithm 3.1.
For a vertex p, the set of neighbouring vertices lower in the geome-
try hierarchy than p are determined and used to compute the new
coordinates of p using Equation 3.10 which tends to drive the edge
lengths surrounding p to unity. Though we observe good results with
this method, an alternative may be to use a quality-based objective for
vertex smoothing.

smoothVertices

input: M =(V,7), m
output: M

1 for p € V > all vertices of the mesh

2 C < C(p) from Equation 3.2

3 E«{e=(pq)lg 28y Ve N(C)}

4 Xp < computeCoordinates(x,, m, &) (Equation 3.10)
5 ifgp # O

6 Xp ¢ placeOnGeometry(g,,Xp)

7 if 3 x € C with v(x) < 0 > with coordinates X,

8 continue

9 Xp < Xp > accept the coordinates

swapEdges

inputt M = (V,T), m, g;

output: M = (V,T)

1 while 7 is modified

2 for e € E(T)

3 C <+ C(e) from Equation 3.2
4 Jmin < Min(gm(x)), k € C

5 if Gmin > gt

6 continue

7 M trySwap (M, m, e, Gmin)

Algorithm 3.1: Vertex smoothing algo-
rithm. The inputs consist of the ini-
tial mesh M = (V,7), a set of met-
ric tensors at each vertex of the mesh
m. The proposed coordinates are com-
puted according to Equation 3.10 with
the edges connected to the vertex de-
fined on Line 3. Should the vertex lie on
a geometry entity (gp), it must be placed
on the geometry (Line 6). The visibility
of the vertex with the proposed coordi-
nates is checked on Line 7. The topology
T is not modified.

Algorithm 3.2: Edge swap algorithm.
The inputs consist of the initial mesh
M = (V,T) and a set of metric tensors
at each vertex of the mesh m and a target
quality to improve, g;. In contrast to the
split and collapse algorithms, swaps at-
tempt to locally improve the worst qual-
ity of the mesh (Line 4) unless it is al-
ready greater than the target g; (Line 5).
Only the topology 7T is modified.

3.4. SCHEDULING THE LOCAL OPERATORS

55

trySwap
input: M = (V,T), m, e, qo
output: M
1 Llmin ¢ min(dm(e)) e € E(T)
2 Llmax ¢ max({m(e)) e € E(T)
3 gmin — qo
4 m <+ @ the candidate re-insertion vertex
5 C < C(e) from Equation 3.2
6 for p € N(C) r> all the vertices of the cavity
7 ifpce
8 continue
9 if gp £ 8
10 continue
11 B <+ B(p,dC) from Equation 3.3
12 if 3x € Bwitho(x) <0
13 continue
14 g < min(gm(x)), x € (V,B)
15 if 4 < gmin
16 continue
17 if 3e € £(B), with fm(e) < min OF Im(e) > lmax
18 continue
19 if 3 x € B violating Proposition 1
20 continue
21 min < g
22 m<—p
23 ifm=0
24 return
25 T« T\C U B(m,JC)

Algorithm 3.3: Edge swap kernel. The
inputs consist of the initial mesh M =
(V,T), a set of metric tensors at each
vertex of the mesh m and the edge e
about which swaps will be attempted.
The input g¢ refers to the quality that
will be used as the benchmark for im-
provement. Line 9 corresponds to the
geometry hierarchy check and Line 12
corresponds to the visibility check of
Equation 3.4. If the swap creates edge
lengths that are outside the edge length
bounds of the current (entire) mesh
(computed on Lines 1 and 2), then the
swap is rejected (Line 17). The optimal
re-insertion vertex m is selected as the
one which most improves the incoming
worst quality go. If no re-insertion vertex
is found such that this gy is improved,
then no swap is performed (Line 23).
The operator is applied on Line 25. Note
the vertices V' are not modified.

56 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION
collapseEdges
input: M = (V,T), m, swapout
output: M
1 (min ¢ Min(gm(x)), € € M
2 repeat
3 ne = 0 > initialize number of collapses
4 Eshort < D > list of short edges
5 for e € E(T)
6 if fm(e) < V2/2
7 <5‘short A <E‘short U (Uo, Ul) U (Ul/ UO)
8 gshort A Sort(gshort)
9
10 for e € Egort
11 C <+ C(vp) from Equation 3.2
12 if goy £ 8o,
13 if (swapout)
14 M < trySwap (M, m, e, Gmin)
15 Eshort update(gshort)
16 continue
17 B < B(v1,0C) from Equation 3.3
18 if 3x € Bwitho(x) <0
19 if (swapout)
20 M < trySwap (M, m, e, Gmin)
21 Eshort < update(gshort)
22 continue
23 if 3« € B with gm(x) < min
24 continue
25 if 3 x € B violating Proposition 1
26 continue
27 T+ T\CUB
28 V<~ V\ V()
29 ne + ne+1

@D
o

until n, =0

Algorithm 3.4: Edge collapse algorithm.
The inputs consist of the initial mesh
M = (V,T), a set of metric tensors
at each vertex of the mesh m and a
boolean flag, swapout corresponding to
whether edge swaps will be attempted
when collapses are rejected. Further-
more, Line 18 corresponds to the visibil-
ity check of Equation 3.4 and Line 23 en-
sures the worst quality of the mesh does
not degrade. If a swap is performed on
Line 14 or 20 then the list of long edges
in Egport must be updated. Note that the
collapse is considered in both directions
(each endpoint of a short edge onto the
other) — see Line 7. Both the topology T
and the vertices V are modified.

3.4. SCHEDULING THE LOCAL OPERATORS

57

O© O NVl &~ W N R

W W W N N N DNDNDNDNDNDNNDNR B QB D QD B bW oW = -
N R © O 0o U1l . W N R OO N U1 - W N B O

33
34

splitEdges

input: M = (V,T), m, {;, swapout, fyof
output: M = (V,T)
Linin < min({m(e)), e € E(T)
if Lin < 0.5

linin = 0.5
Amin < min(qm(K))' keT
repeat

ns = 0 o> initialize number of splits

E—E(T)

glong — @

for e € £(T)

if Em(e) > ft
glong A glong Ue
glong A 50rt<€long)

for ¢ € Ejong

C <+ C(e) from Equation 3.2

p+ [V[+1

xp <+ midpoint(e)

B < B(p,dC) from Equation 3.3

if g #0
xp < placeOnGeometry(g,, x;)
C < enlarge(C,p)

if 39 € N(C) with ¢m(p,q) < lmin
if (swapout)

M < trySwap (M, m, e, Gmin)
Elong A update(glong)

continue

if 3« € B with gm (%) < min
continue

if faof - vm(B)/vA < ‘B|
continue

T+ T\CUB

V~VUp

ng < ns+1

until n; =0

Algorithm 3.5: Edge split algorithm.
The inputs consist of the initial mesh M,
a set of metric tensors at each vertex of
the mesh m, a target length for which
edges will be split ¢; and a boolean flag,
swapout corresponding to whether edge
swaps will be attempted when insertions
are rejected due to the creation of short
edges (Line 22). This check is relaxed
when e is on a geometry Edge. First, the
list of edges with length greater than ¢;
is identified and then sorted according
to length; also, edges on the geometry
are placed at the beginning of the list.
Furthermore, Line 27 ensures the worst
quality of the mesh does not degrade.
Line 29 restricts insertions by checking
the number of inserted elements does
not grow too large relative to the met-
ric volume of the inserted elements. An
input factor fq,¢ controls this behaviour.
Should an edge be on the geometry, then
the vertex is placed on the geometry
(Line 20). Note that if a swap occurs on
Line 24, then the list of long edges jong
must be updated. Both the vertices V
and the topology 7 of the mesh M are
modified.

58 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION
adaptMesh
input: Mi, = (Vin, Tin), m, swapout, £o, fgof
output: Moyt (modified)
1
2 T+ TinUTg © close the mesh
3
4 > stage 1: target edges longer than ¢
5 do (twice)
6 M < collapseEdges(M, m, swapout)
7 M + splitEdges(M, m, £y, swapout, f4.f)
8 M <+ swapEdges(M,m,0.4)
9 M <+ swapEdges(M,m,0.8)
10 M «+ smoothVertices(M, m)
11
12 [> stage 2: target edges longer than /2
13 do (twice)
14 M <+ collapseEdges(M, m, swapout)
15 M <« splitEdges(M, m, /2, swapout, fyof)
16 M < swapEdges(M,m,0.4)
17 M < swapEdges(M, m,0.8)
18 M < smoothVertices(M, m)
19
20 D> stage 3: do a last pass of swaps
21 M + swapEdges(M, m,0.4)
22 M < swapEdges(M, m,0.8)
23
24 Tout < T \ Tg > remove ghosts
25 Mout < (V, %ut)

Algorithm 3.6: Mesh adaptation algo-
rithm. The inputs to the algorithm are
the input mesh (My), a metric field (m),
an option to allow splits and collapses
to swap out of restrictive topological
configurations (swapout), a target edge
length for the first pass of edge splits (£o)
and an option to restrict the degrees-of-
freedom during edge splits (f4of). When
active, this parameter is set to fyor = v/2.
Observe that swaps are broken into two
stages, first targeting elements with a
quality less than 0.4, subsequently tar-
geting those with quality less than 0.8.

3.5. ASSESSMENT OF THE MESH ADAPTATION CAPABILITY 59

3.5 Assessment of the mesh adaptation capability

Let us now assess our mesh adaptation adaptation algorithm by study-
ing three-dimensional benchmark cases from the Unstructured Grid
Adaptation Working Group®? as well as some four-dimensional cases.
We will further evaluate the utility of the proposed mesh adaptation
components (splits, collapses, swaps, smoothing) along with the pa-
rameters we propose.

Assessment procedure

The goal, here, is to produce a metric-conforming mesh for some do-
main of interest (). In the following, we begin with some initial mesh
and prescribe an analytic target metric, my, at the vertices of the initial
mesh.

Directly applying the analytic metric at the vertices of the input
mesh would generally be inconsistent with our assumption about the
metric with respect to the initial mesh. That is, the lengths of the edges
of the input mesh may not be within the expected range of ~ [3,2].
As a result, we propose a simple metric limiting procedure, described
in Algorithm 3.7 to limit the analytic metric so as to emulate the be-
haviour we expect from our adaptive simulation where metrics are
provided by MOESS3. As the algorithm converges, the metric should
no longer be limited, but should approach the analytic target metric.
Michal and Krakos suggest a similar metric limiting procedure>.

Each iteration of Algorithm 3.7 starts by computing the vertex-
valued implied metric m; of the current mesh by optimizing the ob-
jective function of Equation 2.23. Next, the step matrices from this
vertex-valued implied metric to the analytic target one, m;, are com-
puted and then limited in the same manner as the MOESS algorithm
in Equation 2.45. The refinement factor is set to h,s = 2 which, in
general, does not guarantee that every mesh will have a length in the
range [%,2] (because of the coupling between the vertex step matrices
along each edge) but should be close to being in the range.

Metric conformity is assessed by evaluating the edge lengths and
simplex qualities under the original (unlimited) analytic target met-
ric. The percentage of edges (%/unit) within the characteristic range of
[v/2/2,+/2] for a quasi-unit mesh is reported as well as the fraction of
simplices with a quality greater than 0.8 (%qunit)-

We further report the total number of simplices and compare that
with the analytic expected number of simplices:

| v/detm;(x)dx

ns:Q

o (3-15)

62. Ibanez et al., First Benchmark of the
Unstructured Grid Adaptation Working Group.
2017

3. Yano, An Optimization Framework for
Adaptive Higher-Order Discretizations of Partial
Differential Equations on Anisotropic Simplex
Meshes. 2012

50. Michal et al., Anisotropic Mesh Adaptation
through Edge Primitive Operations. 2012

https://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.800
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.800

60 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

generateMetricConformingMesh

input: M = (V,T), my
output: M

sy < limit(s,) using Equation 2.45 with li.of = 2
—-1/2, . —1/2
my < exp (mllv symp,)
M + adaptMesh(M, m)

1 for i =1 to fjger

2 m; < impliedMetric(M) by minimizing Equation 2.23
3 m < m¢(V) > evaluate target metric at vertices

4 for veV

5 sy < log (m;ﬂ}/zmymfﬁ}/z)

6

7

8

For some metric fields, this may be analytically computed.

Demonstration on three-dimensional benchmark cases

The three-dimensional benchmark cases studied in this section are se-
lected from the first benchmark of the Unstructured Grid Adaptation
Working Group®?. The geometries and descriptions of the metrics can
be accessed at the group’s repository®* and are briefly reviewed here.

Cube Linear (CL) The Cube Linear (CL) case consists of generating a
mesh within a unit cube Q = Q. € [0,1)3] for the metric m;(x,y,z) =
diag(hy?, b, %, hz) with hy(z) = ho +2(0.1 — ho)|z — 0.5] (o = 0.001)
and hy = h; = 0.1. Evaluating Equation 3.15 yields an expected ncy, =
39k tetrahedra.

Cube-Cylinder Linear (CCL) The Cube-Cylinder Linear (CCL) case ex-
ploits the same metric as the Cube Linear case but generates the mesh
in a domain represented by the Boolean subtraction of a cylinder (),
centered along the z-axis with radius 0.5, from the unit cube Q. =
[0,1%: Q = Q; — Q. The expected number of simplices is computed
from the volume fraction of the resulting domain from the unit cube:
neer, = (1— }IH)WCL ~ 31.7k tetrahedra.

Cube-Cylinder Polar 1 (CCP1) The Cube-Cylinder Polar 1 (CCP1) case
consists of generating a mesh within the same geometry as in the

Algorithm 3.7: Target metric assessment
procedure. The analytic metric m; is
first evaluated at the current mesh ver-
tices (Line 3) and then limited in Line 6
according to the step from the implied
metric of the mesh to the target (Line 5).
A new mesh is then generated on Line 8
from which metric conformity under the
analytic metric can be assessed.

62. Ibanez et al., First Benchmark Qf‘ the
Unstructured Grid Adaptation Working Group.

2017

81. Unstructured Grid Adaptation Working
Group, UGAWG GitHub repository. 2019

https://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.800
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.800

3.5. ASSESSMENT OF THE MESH ADAPTATION CAPABILITY 61

Cube-Cylinder case but defines an analytic metric

cost —sint 0
m(x) = Qdiag(h; %, h;2,h;3)Q!, with Q= | sint cost 0 |,

0 0 1
(3.16)
where r = /x2+y?, t = arctan(y,x), iy = h; = 0.1 and h, =

ho +2(0.1 — hg)|r — 0.5] (hp = 0.001). The expected number of tetrahe-
dra is 20.2k. As noted by Ibanez, this metric is quite difficult to con-
form to, mostly because of the large gradation in the mesh requested
near the curved surface. Ibanez, in fact, proposes a metric smoothing
procedure to make the mesh generation procedure slightly easier for
this case which ultimately forms the Cube-Cylinder Polar 2 metric in
the following.

Cube-Cylinder Polar 2 (CCP2) To relax the gradation near the curved
surface of the Cube-Cylinder geometry, Ibanez®? proposes to modify
the metric of the Cube-Cylinder Polar 1 case by adjusting the spacing
in the tangential direction /;:

01 if d<0O

hy =) ithd =10(0.6 — 7).)
t {foJrO-l(l—d) if d>0 M (r). (3.17)

We expect 34.01k tetrahedra for this case.

Results The meshes generated by our algorithm are shown in Fig-
ure 3.7 which appear similar to those produced by the UGAWG®?. A
more quantitative assessment is given by the metric conformity statis-
tics of Table 3.2 along with the edge length and tetrahedron quality
histograms of Figure 3.5. For all cases except the Cube-Cylinder Polar
1 case, we see excellent metric conformity whereby at least 95% of the
edges are within the quasi-unit range. Furthermore, the number of
simplices with quality greater than 0.8 is excellent, ranging from 79%
to 92% except for the Cube-Cylinder Polar 1 case. Again, we note that
this case was deemed difficult because of the high gradation requested
by the metric near the curved surface of the cylinder.

An important distinction of our algorithm in contrast to the partici-
pants of the UGAWG is that the number of tetrahedra achieved by our
algorithm is much closer to the analytic expected number. In partic-
ular, observe that we are often within 5 — 6% of the expected number
(omitting the Cube-Cylinder Polar 1 case) as shown in the number of
simplices of Table 3.2. The convergence of the number of tetrahedra
over the course of the 20 adaptation iterations for each case is shown
in Figure 3.6 which demonstrates that our algorithm steadily achieves
the expected number of tetrahedra (except in the Cube-Cylinder Polar

62. Ibanez et al., First Benchmark of the
Unstructured Grid Adaptation Working Group.

2017

https://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.800
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.800

62 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

1 case which roughly exhibits a 15% overshoot). Furthermore, the con-
vergence of the edges in the quasi-unit edge length range (measured
under the analytic metric) converges to 95-99%, again, with the ex-
ception of the Cube-Cylinder Polar 1 case which steadily converges to
approximately 86% metric conformity in the quasi-unit edge lengths.

Of all of the cases, metric-conformity is poorest for our algorithm
when applied to the Cube-Cylinder Polar 1 case, which can be ob-
served in both the statistics of Table 3.2 and the wider distributions of
Figure 3.5.

Table 3.2 also reports the metric-conformity statistics obtained from
the meshes generated by the feflo.a and EPIC-ICSM5° softwares. In
addition to matching the expected number of tetrahedra more closely,
our algorithm compares well with existing technologies. With the ex-
ception of the Cube-Cylinder Polar 1 case, the fraction of edges in the
quasi-unit range is highest with our algorithm. For all cases, the frac-
tion of simplices in the quasi-unit range is highest with our algorithm.

CL (390k) emin gmax Eavg (yogunit Jmin EIan
Current 0.67 177 1.06 99.10% 0.47 0.90
feflo.a 045 1.80 1.03 9828% 049 0.85

EPIC-ICSM 0.32 1.95 1.03 93.04% 035 0.81

CCL (31.7k) #min fmax gavg Y%lunit Gmin Gavg
Current 0.59 270 1.07 98.79 % 0.27 0.89
feflo.a 0.21 2.55 0.97 93.73% 0.04 0.80

EPIC-ICSM 0.34 244 1.03 92.07% 0.20 0.81

CCP1 (20.2k) lmin ~ fmax gavg Ylunit Gmin Gavg
Current 0.29 4.07 1.14 8566% 0.06 0.70
feflo.a 0.18 17.40 1.03 89.16% 0.01 0.68
EPIC-ICSM 0.16 3.14 1.04 86.19% 0.10 0.69
CCP2 (364k) Emm Lrmax gavg 0/Oguni’c dmin favg

Current 0.50 222 1.09 9576 % o0.17 0.86

feflo.a 0.18 265 098 093.83% 0.06 0.80

EPIC-ICSM 037 230 1.03 9177 % 0.24 0.81

56. Loseille et al., Unique Cavity-Based
Operator and Hierarchical Domain Partitioning
for Fast Parallel Generation of Anisotropic
Meshes. 2017
50. Michal et al., Anisotropic Mesh Adaptation
through Edge Primitive Operations. 2012
Y%oqunit # simplices
92.15 % 38.30k
74.28 % 45.16k
O,
59.52 % 47.55k
Y%oqunit # simplices
90.88 % 30.45k
55.65 % 46.29k
56.71 % 38.30k
Yoqunit # simplices
43.22 % 23.25k
o
3359 % 3531k
35.95 % 30.38k
Yoqunit # simplices
78.76 % 34.20k
55.92 % 53.12k
58.52 % 44.28k
Table 3.2: Metric-conformity statis-

tics for the UGAWG benchmark cases:
Cube Linear (CL), Cube-Cylinder Linear
(CCL), Cube-Cylinder Polar 1 (CCP1)
and Cube-Cylinder Polar 2 (CCP2). The
current algorithm is compared with the
feflo.a’ and EPIC-ICSM software im-
plementations. The expected number of
simplices are shown in the top-left cells
alongside the case labels.

https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008

3.5. ASSESSMENT OF THE MESH ADAPTATION CAPABILITY

% edges
10"

107 ¢

[JcL
[JccL

63

% simplices

(a) Edge lengths

quality
(b) Simplex quality

Figure 3.5: Metric conformity statis-
tics for our algorithm applied to the
UGAWG benchmark cases.

% conformity

% simplices
1201 100

90

100
80

80
70
60 60
50

40
40

20
30
ol ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | 20

2 4 6 8 10 12 14 16 18 20
adaptation

(a) % simplices

10 12
adaptation

(b) % conformity

Figure 3.6: Normalized number of sim-
plices (% simplices) and fraction of
edges in the quasi-unit range (% con-
formity) produced by our algorithm for
each 3d benchmark UGAWG case.

64

CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

i
wy i
i
i

T
)l) f

<\
S g
Vm‘f%';i" 1l g
NG oo es s (104
albvn: oAy 1
S R
N {M’;}“('“ (mm M ‘L"l’ ()
v
) Mt e
ol e RS s
el g 4 i
m%ﬁ'ﬂ%’éé;;i%ilﬁﬁammmmmn g

(c) Cube-Cylinder Polar 1

N,

N

N

N

N
N
NN
W

N
N

W

N
N

NN

(d) Cube-Cylinder Polar 2

Figure 3.7: Meshes generated for the
three-dimensional UGAWG benchmark
cases.

3.5. ASSESSMENT OF THE MESH ADAPTATION CAPABILITY 65

Assessing the utility of various mesh adaptation components

We previously observed that our algorithm conforms well overall to
some standard benchmark cases put forth by the Unstructured Grid
Adaptation Working Group. An important question arises: what is the
impact on metric conformity for the specific choices made in our adap-
tation algorithm? To answer this question, let us study some variants
of our algorithm by turning off (or modifying) certain parameters that
were previously discussed and used to produce a metric-conforming
mesh.

In particular, we will study five variants applied to the Cube Linear
case. The first variant consists of performing both stages with a target
split length of /; = /2 in contrast to performing the first stage with
ly = lp = 2 and a second stage of ¢; = V2. This is referred to as
the Same Length variant in the results that follow. Metric conformity,
as reported in the edge length and quality histograms of Figure 3.9
appears better than the current algorithm (almost 100% in edge lengths
and 93.47% in quality), however, observe the number of tetrahedra
produced. Figure 3.10(a) as well as Table 3.3 highlight that this variant
overshoots the expected number of tetrahedra by roughly 10%.

The second variant, consists of keeping all components of the al-
gorithm with the exception of the swapout flag which was intended
to swap out of restrictive topological configurations. Hence, this is
referred to as the No Swapout variant. The results suggest that little
difference is observed in metric conformity as compared to our cur-
rent algorithm for this particular case.

The third variant consists of allowing for insertions without check-
ing for the creation of short edges (No Limit). The result is a noticeable
shift towards the creation of shorter edges and a significant 71% over-
shoot in the expected number of elements. Furthermore, the quality
of the tetrahedra has degraded which is observed in Figure 3.9. This
result provides a quantitative reasoning behind Loseille’s suggestion5°
to perform edge splits without creating short edges in the process.

The fourth variant consists of performing all stages of the algorithm
in the absence of vertex smoothing (No Smoothing). Here, metric con-
formity drops to roughly 97% in edge lengths and 64% in tetrahedron
quality and the number of simplices is overshot by 23%. The edge
length histogram of Figure 3.9 is noticeably more sporadic and ele-
ment quality is also compromised. The mesh produced by this vari-
ant (see Figure 3.8) also appears quite irregular. This result suggests
that vertex smoothing is critical in achieving metric conformity and
respecting the number of simplices expected by the metric.

Finally, we attempt to mimic Loseille’s algorithm by performing
only a single stage of the overall algorithm (Single Stage). That is, we

< No Swapout?

This does not mean that
we do not use swaps at
o all for this variant. We
& ’ still use the global pass on
" swaps at Line 8,16 and 21
of Algorithm 3.6 but do
not use them on Line 14
and 20 of Algorithm 3.4 or

Line 24 of Algorithm 3.5.

56. Loseille et al., Unique Cavity-Based
Operator and Hierarchical Domain Partitioning
ﬁw' Fast Parallel Generation qf/\)ziwlmpi(
Meshes. 2017

https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008

66 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

perform a single stage of collapses and splits (with a target edge length
of £; = /2) followed by a single stage of mesh optimization using edge
swaps and vertex smoothing. As in our current algorithm, metric con-
formity is excellent (almost 100% in edge lengths and 93% in tetrahe-
dron quality) but the number of tetrahedra is overshot by roughly 12%
to 43.6k. This is close to the 45.15k value reported for Loseille’s soft-
ware implementation feflo.a in the UGAWG benchmark paper. The
results for the Single Stage variant seem to parallel those for the Same
Length variant, though the latter achieves slightly better metric confor-
mity for this case, possibly because it is effectively performing twice
as many passes through the adaptation algorithm. The use of mul-
tiple stages obviously has an effect on the runtime of the adaptation
algorithm but with a total runtime of 30-60 seconds per adaptation it-
eration, this is certainly acceptable, considering these meshes translate
to roughly 160k DOF for a p = 1 discontinuous Galerkin discretiza-
tion.

Let us conclude this section by remarking that, although we studied
how the various adaptation components affect metric conformity, our
algorithm is still heuristic. It is possible that a single measure of metric-
conformity could be used to drive all adaptation components towards
a common goal. An algorithm that consists of a single iterative loop in
which each operator is appropriately selected to improve this measure
of metric-conformity would be worthwhile to investigate.

Variant Notes lmin fmax lavg %lunit Gmin
Current - 0.67 1.77 1.06 99.10% 0.47
Variant 1 Same Length o057 1.66 1.03 99.92% 0.09
Variant 2 No Swapout 0.64 1.69 1.06 99.06% 0.46
Variant 3 No Limit 0.06 1.62 0.95 89.60% o0.10
Variant 4 No Smoothing 058 250 1.03 96.48% 0.09
Variant 5 Single Stage 055 1.72 1.02 99.74% 0.1y

Javg ~ %qunit # simplices
0.90 92.15 % 38.30k
0.90 93.46 % 42.67k
0.90 92.08 % 38.20k
0.80 62.45 % 58.62k
0.83 67.44 % 47.65k
0.90 92.25 % 43.60k

Table 3.3: Metric-conformity statistics
obtained by slightly modifying Algo-
rithm 3.6 when generating a mesh for
the Cube Linear case. Recall that 39k
tetrahedra are expected for this case.

67

3.5. ASSESSMENT OF THE MESH ADAPTATION CAPABILITY

Meshes generated by vari-

ants of our mesh adaptation algorithm
applied to the Cube Linear UGAWG

With the exception of the case
in which vertex smoothing is disabled,
it is difficult to visually distinguish be-
tween the resulting meshes. The metric-
3.10 and Table 3.3 provide a better quan-

conformity statistics of Figures 3.9 and
titative comparison of each variant.

®
(39}
]
=
=
o0
o
=21

case.

<
50 =
= N
K %ﬂ NN Tm_
o e
e A z
at) S c
N gl ey 2 =
N 2 X
B i
KIX))
s 1)
VA
N D PENSIvAR ANVAN
BRSRRNR AN IVASSAN TSV
my«?ﬂ«nz«»wmw,, 4 s«(ﬂh«mpwnmﬂ,ﬂ, 5 %%4’?0/: mﬂmmm
= o AN
g &
= 2
= 3
o ©]
= Z
c

W<

(f) Single Stage

(e) No Smoothing

68 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION
% edges % simplices
107 ¢ q
[_ICurrent 10
[ISsame Length
[_INo Swapout
[——INo Limit
No Smoothing 102
[ISingle Stage
107 ¢
10
| I -5
2 10 0
length quality
(a) Edge lengths (b) Simplex quality

Figure 3.9: Edge length and tetrahedra
quality histograms obtained by slightly
modifying Algorithm 3.6 when generat-
ing a mesh for the Cube Linear case.

% simplices % conformity
200 r 100
180 90
160
80
140
120 70
100~ e e e 60
80
50
= Current
60 — Same Length 40
40 —— No Swapout
— No Limit
20 No Smoothing 30
— Single Stage
oL)))) 20 , , , , , , , ,)
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
adaptation adaptation

(@) % simplices

(b) % conformity

Figure 3.10: Normalized number of
tetrahedra (% simplices) and fraction of
edges in the quasi-unit range (% confor-
mity) when modifying Algorithm 3.6 for
the Cube Linear case.

3.5. ASSESSMENT OF THE MESH ADAPTATION CAPABILITY 69

Demonstration on four-dimensional cases

Having demonstrated that Algorithm 3.6 (and its components) works
well on three-dimensional benchmark problems, let us now study some
four-dimensional metric-conforming problems. In so doing, the objec-
tive of this thesis related to demonstrating the first anisotropic four-
dimensional mesh adaptation capability will be satisfied. Furthermore,
we will assess the utility of the aforementioned DOF control factor.

Tesseract Linear (TL) The first problem, inspired by the UGAWG Lin-
ear metric, is represented analytically by

m(x) = diag (h;2, 222, h;2) , (3.18)

where hy = hy = h; = hmax and by = hg + 2(hmax — ho)|t — 0.5,
with hyp = 0.01hmax. Meshes are generated for the two cases where
hmax = [0.25,0.125] so as to assess the performance at both low and
moderate mesh sizes. Here, we expect to see six of the eight bounding
hypercubes (non-constant ¢ hyperplanes) to show refinement in the ¢
direction. The constant ¢ hyperplanes should exhibit uniform meshes.
This case will be referred to as the Tesseract Linear (TL) case and will
be further classified as the Tesseract Linear 1 (imax = 0.25) and Tesser-
act Linear 2 (hmax = 0.125). The Linear 1 case expects 51k pentatopes
whereas the Linear 2 case expects 818k pentatopes.

Tesseract Wave (TW) The second metric field is modeled after an ex-
panding spherical wave in 3d (see Fig. 3.11). Consider a spherical wave
of radius Ry = 0.4 centered about the origin at time ¢ = 0. If the wave
expands at a constant velocity v, to a radius Ry = 0.8 at time t = 1,
then the expanding sphere traces the geometry of a hypercone in 44.

Figure 3.12 exhibits the behaviour of the expanding (d — 1)-sphere
in a spherical-temporal coordinate system. Note that a slice of the (d +
1)-dimensional cone with a hyperplane with non-constant temporal
component yields a d-cone. Here, this appears as a line but rotational
symmetry implies the hypercone sliced by a hyperplane with non-
constant temporal component yields the three-dimensional cone.

The metric used to capture the propagation of this wave is m(x) =
Qdiag (h;z,hgz, h;z,hfz) Q!. The eigenvectors Q are readily derived
by rotating the spherical coordinate unit vectors by an angle & corre-
sponding to the angle made by the velocity vector with the temporal
axis. Only the radial unit vector is affected by the rotation which re-
sults in a basis given by

Figure 3.11: Sphere expanding
at constant velocity.

t=20 1
T’IRQ

ﬁV

Figure 3.12: Temporal slice of
a d 4 1-cone produced from the
expansion of a d-sphere.

<l How do you compute the metric at

the origin (r = 0)?

Actually, we shift the spa-

tial domain such that x €

; [e,1+¢€]? for € = 0.001. To

¢ achieve the initial and fi-
nal prescribed radii, these
are Ryg = 0.4 + v/3¢2 and
Ry =08+ V3e%.

bk

70 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION
sinwcos¢sinf cos¢cosf —sing coswacos¢sind
sinasingsinf cosfsing cos¢ cosasingsind

Q= . .
sina cos 0 —sinf 0 cos & cos 6
—cosa 0 0 sina
(3-19)
The spacings in the tangential directions are
hy, |r — R(t)|> 9,
ho, hy = .20
o { (=)l — RO /6 + 1, |r—R(B)|<o, 329

with R(t) = R + (Rf — Ro)t is the position of the spherical wave with
time. The spacing in the radial direction is h, = ho + 2(hy — hy)|r —
R(t)| and the spacing in the temporal direction is &i; = 0.5. Note the
use of spherical coordinates, r = /x% + y? + z2, § = arccos(z/r) and
¢ = arctan(y, x). The rotation angle is equal to & = arctan(t; — fo, Ry —
Rp). The remaining parameters are hy = 0.0025, h; = 0.125, h, = 0.05
and § = 0.1. We were unable to determine the analytic number of
pentatopes for this case, however, using numerical quadrature on the
resulting meshes provides an estimate of 275k pentatopes.

Results We follow the same assessment procedure as was done for
the three-dimensional benchmarks (see Algorithm 3.7). Here, we ad-
ditionally assess the utility of the DOF control factor, f4of, which was
proposed in an attempt to reduce the overshoot in the number of pen-
tatopes.

Meshes for the Tesseract Linear 1 case are provided in Figure 3.16
and those for the Tesseract Wave case are provided in Figure 3.17.
The edge length and quality histograms of Figure 3.14 demonstrate an
acceptable level of metric conformity for all cases. The poorest metric
conformity is observed in the difficult Tesseract Wave case with the
enabled DOF control during insertions, though this is only 3% lower
than that without control.

More importantly, the DOF control factor is successful in more closely
achieving the expected number of simplices for both Tesseract Linear
cases without sacrificing metric conformity. In particular, observe that
the fraction of edges in the quasi-unit range is between 97-98% for
both Tesseract Linear 1 and 2 cases, with or without DOF control — see
Table 3.4. Furthermore, the number of pentatopes overshoots the ex-
pected number by 17% and 12% for the Tesseract Linear 1 and 2 cases,
respectively, without DOF control (Figure 3.15). With the control factor
enabled, we obtain an overshoot of 9% for the Tesseract Linear 1 case
and an undershoot of 0.4% for the Tesseract Linear 2 case. This sig-
nificant improvement in achieving the expected number of pentatopes
suggest (1) larger meshes are needed to achieve good levels of met-
ric conformity and (2) the DOF control factor is effective at resisting

—Linear 1
—Linear 2
— Wave

0 50 100 150

vertex valency

200 250

—Linear 1
—Linear 2
— Wave

15 20 25 35
edge valency

10 30

—Linear 1
—Linear 2
— Wave

triangle valency

Figure 3.13: Fitted vertex, edge and
triangle valencies for the metric-
conforming meshes of the four-
dimensional benchmark cases. The
dashed lines for the vertex figure repre-
sents the valency for boundary vertices
whereas the solid one represents the
valency for interior vertices. The dotted
line in the same figure marks a valency
of 120.

3.5. ASSESSMENT OF THE MESH ADAPTATION CAPABILITY 71

pentatope overshoot without sacrificing metric conformity.

Furthermore, we provide valency statistics for the produced four-
dimensional meshes in Figure 3.13. We define the valency as the num-
ber of pentatopes touching a lower dimensional facet. That is, the
vertex valency is the number of pentatopes attached to a vertex, the
edge valency is the number of pentatopes attached to an edge, etc.
Observe the peak in interior vertex valency (the solid lines in the top
figure) near 120, which aligns with the valency of a vertex within a
120-cell. The boundary vertex valencies are drawn in dashed. The full
statistics for the vertex, edge, triangle and face valencies are tabulated
in Table 3.5. Note that for the larger mesh (Linear 2) the average tetra-
hedron valency (which accounts for both the interior and boundary
tetrahedra) approaches two.

lin Cmax eavg Yolunit qmin favg

Linear 1 (no control) o0.50 1.91 1.08 97.29% 0.16 0.80
Linear 1 (control) 053 1.78 1.10 96.46 % 0.23 0.80
Linear 2 (no control) o0.40 1.86 1.08 98.01% 0.02 0.83
Linear 2 (control) 0.47 1.96 1.11 9727 % 0.11 0.83
Wave (nocontrol) o0.20 271 1.08 9248 % 0.02 0.72
Wave (control) 0.23 299 1.12 88.96% 0.08 o0.72

0,
/o-:-:-dges % simplices
10 10 ¢
[_ITL1 - no control
[ITL2 - no control
[1TW - no control
102 ¢ [JTL1 - control 102
TL2 - control
- control

Y%oqunit # simplices
56.67 % 59.56k
56.35 % 55.66k
67.13 % 915.30k
70.00 % 814.50k
28.75 % 394.07k
26.89 % 347.19k

% overshoot
16.78 %
9.14 %
11.90 %
-0.43 %
43.30 %
26.25 %

Table 3.4: Metric-conformity statistics
for the 4d benchmark cases with and
without DOF control enabled.

length
(a) Edge lengths

quality

(b) Simplex quality

Figure 3.14: Metric conformity statis-
tics obtained from Algorithm 3.6 for the
four-dimensional benchmark cases.

72 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

% simplices % conformity
150 100 -
90
80
100
70
60
507 — TL1 - no control
— TL2 - no control %0
—— TW - no control
—TL1 - control 40
TL2 - control
— TW - control
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ » o gpl : : : : : : ‘
2 4 6 8 10 12 14 16 18 20 2 8 10 12 14 16 18 20
adaptation adaptation
(a) % simplices (b) % conformity
Figure 3.15: Normalized number of
simplices (% simplices) and fraction of
edges in the quasi-unit range (% con-
formity) for the four-dimensional bench-
mark cases. Since the number of pen-
tatopes expected for the Tesseract Wave
case is unknown, the normalization is
done with respect to the number of pen-
tatopes obtained with the DOF control
factor enabled.
Property Linear 1 Linear 2 Wave
interior vertices, v; 1.0k 26.0k 9.0k Table 3.5: Number of vertices, edges,
mean Valency[f/vi 112.21 115.85 118‘33 triangles and tetrahedra along with the
#D d t Kk Kk K corresponding mean valencies for the
oundary Vertices, vy 3-0 20.0 13.0 metric-conforming meshes of the four-
mean Valency, 17% 49.28 55.33 56.79 dimensional benchmark cases.
edges, ¢ 45.0k 588.0k 267.0k
mean valency, 7, 12.31 13.93 13.21
triangles, ¢ 133.0k 1831.0k 813.0k
mean valency, V; 4.19 447 434
tetrahedra, f 147.0k 2108.0k 920.0k
mean valency, V¢ 1.89 1.94 1.92

3.5. ASSESSMENT OF THE MESH ADAPTATION CAPABILITY 73

. [Figure 3.16: Meshes generated by Algo-

2 rithm 3.6 for the Tesseract Linear 2 case.
Sl S =t
S e |
NN gty iy R NN
KN RSP KR ALK T
SR Dl K SN
i e) i

gD g R A
MWMN;(‘(mm‘m&“

i =
N Vi

Rl e ZAVAYAY i XA
i iR 7 NN APA0
KRR AR U N A
Gl oSw N s
AR g

i 41“"" : ullm""gai("‘

q
XKD
R

ad|

o

il [5’%’3»## L

f Sl vtz

i Sl o
e Sl e
| L SR KK N YD

T g

m“'l"““ “Mm""“{‘

CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

74

Figure 3.17: Meshes generated from our
adaptation algorithm for the Tesseract

Wave case.

N N

{=SSSS=A \\\%Wﬂ%wu IS5 2
%\N\\uﬂﬂmwvmw«, = \%\\\uﬂam«mm«mwm - \% AR, -
\\\\\\\\‘ﬂﬂnﬂwﬂﬂﬂ m \\\\\\\\‘ﬂﬂﬁh&rﬁﬂ _)_y \ \\ \\\Nﬂ!ﬂ»ﬂﬂﬂ m
%N\»Mmm« \\%NN%MW»% %N\,%M«M Rt
) U U

(h)t=1

@t=0

3.6. PERSPECTIVES 75

3.6 Perspectives

This chapter developed the theory and implementation details of our
mesh adaptation algorithm. We then demonstrated our algorithm on
three-dimensional benchmark cases, inspired by the recent work of
the Unstructured Grid Adaptation Working Group. The utility of the
mesh adaptation components was studied by assessing how each com-
ponent affects metric conformity, both in the sense of edge length and
simplex quality histograms as well as in achieving the expected num-
ber of simplices. However, we re-iterate that our algorithm is heuristic.
Future work may involve unifying these criteria for metric-conformity
into a single quality criterion that would drive a more rigorous mesh
adaptation schedule.

Finally, the algorithm was demonstrated on some newly introduced
four-dimensional benchmark cases. We re-iterate that this is the first
time four-dimensional anisotropic mesh adaptation has been demon-
strated in the literature. An important feature of the algorithm for
four-dimensional cases was the introduction of a DOF control factor,
used to restrict insertions from causing a significant overshoot in the
expected number of simplices.

Though the four-dimensional cases studied here are contained within
the unit tesseract, the algorithm can handle time-dependent geome-
tries with changing topologies, provided the vertex-to-geometry asso-
ciations are specified. The same algorithm used to construct the unit
tesseract geometry in Appendix A can be used to construct more com-
plicated straight-sided geometries that represent these moving bound-
aries. Otherwise, some suggestions for generating time-varying ge-
ometry descriptions are provided at the end of the the aforementioned
appendix. Generating the initial four-dimensional mesh for more com-
plicated geometries remains an open problem.

Order p=1 p=2 p=3
Case dG cG dG cG dG cG

Linear 1 | 277.9k 4.0k | 833.9k 49.2k | 1.9M 226.9k | 3.9M 537.1k

Linear 2 | 4.1M 46.0k | 123M 633.8k | 28.M 3.1M
Wave 1.8M 21.6k | 53M 288.6k | 123M 1.4M

The adaptation algorithm is currently restricted to a serial imple-
mentation, the performance of which is acceptable for the problem
sizes studied in this work. One iteration of the mesh adaptation algo-
rithm takes approximately 30-60 seconds for moderately sized (about
40k tetrahedra) three-dimensional problems and 15-20 minutes for the
larger four-dimensional meshes with 800-9ook pentatopes. Future work
consists of parallelizing the mesh adaptation components using both

p=4
dG cG
57.3M 7.3M
24.7M 3.3M

Table 3.6: Cost of the discontinuous
(dG) and continuous (cG) discretizations
with various polynomial orders p for the
metric-conforming meshes produced for
the four-dimensional benchmark cases.

76 CHAPTER 3. FOUR-DIMENSIONAL MESH ADAPTATION

shared- and distributed-memory approaches. This might consist of
adapting partitions of the input mesh while keeping the boundaries
of the partitions fixed, followed by an adaptation of these partition

boundaries as in the recent work of Loseille>® or the work of Digonnetgz.

Furthermore, a heterogeneous approach similar to that of Ibanez”> or
of Tsolakis®3 is also attractive.

Software implementation

We conclude this chapter by introducing our software, avro, the source
code of which is openly available. The name for the software was moti-
vated by the initial intent to develop an adaptation tool using Voronoi
diagrams with isometric embeddings (which is clearly not the case
anymore), hence an Adaptive VoROnoi mesher. Despite the function-
ality in the software moving in a different direction, the name stuck,
mostly in tribute to the Canadian Avro CF-105 Arrow of the 1950s.

Metric-conformity was the primary goal of our mesh adaptation
software implementation. However, it is equally important to con-
sider the performance of the algorithm components and design the
data structures to attain a reasonable level of efficiency. Ideally, the
computational cost of the algorithm should be dependent on the num-
ber of local operations needed and not on the size of the mesh. For
example, the most frequent operation in the mesh adaptation tool is
the identification of the set of elements sharing a common facet f: C(f)
(Equation 3.2). An exhaustive search through the mesh would incur an
order O(|T|) cost which would be too costly to be done when looping
over all edges or vertices of the mesh. A more efficient implementa-
tion for this operation is achieved by exploiting the simplex neighbour
relations along with what is called the inverse topology. Further details
are provided in Appendix C.

56. Loseille et al., Unique Cavity-Based
Operator and Hierarchical Domain Partitioning
for Fast Parallel Generation of Anisotropic
Meshes. 2017

82. Digonnet et al., Massively Parallel
Anisotropic Mesh Adaptation. 2017

75. Ibanez, Conformal Mesh Adaptation on
Heterogeneous Supercomputers. 2016

83. Tsolakis ef al., Parallel Anisotropic Unstruc-

tured Grid Adaptation. 2019

<1 Did you know?

The Avro Arrow program
was abruptly shutdown in
February of 1959. For
more information on the
Arrow, please click here.

https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/10.1177/1094342017693906
https://dx.doi.org/10.1177/1094342017693906
https://en.wikipedia.org/wiki/Avro_Canada_CF-105_Arrow

CHAPTER 4

APPLICATIONS TO ADAPTIVE NUMERICAL

SIMULATIONS

It comes down to the types of
problems you want to solve.

— Siva Nadarajah

4.1 Background

This chapter employs the mesh adaptation algorithm of Chapter 3 in
conjunction with the Mesh Optimization via Error Sampling and Syn-
thesis Algorithm of Section 2.5 to demonstrate the first fully unstruc-
tured four-dimensional mesh adaptation capability to solve partial dif-
ferential equations. The focus is to demonstrate the capability with
discontinuous Galerkin solution fields applied to linear and quadratic
polynomial orders.

The implementation details related to performing the local splits for
the sampling described in Section 2.5 within the Solution Adaptive Nu-
merical Simulator (SANS)®+ framework are provided in Appendix C. The
remaining discretization tools are achieved by extending the frame-
work in SANS to support four-dimensional meshes and solution fields.
In particular, Lagrange basis functions over simplex elements are used
to represent the high-order polynomial bases and the conical product
of Stroud is used to perform the numerical integration. It should be
noted that the aforementioned tensor-product quadrature rules can be
computationally expensive when integrating high-order polynomials,
however, this has not been a computational bottleneck for the prob-
lems in this thesis.

84. Galbraith et al., A Verification Driven
Process for Rapid Development of CFD Software.
2015
<! Warning!
We first tried the
Grundmann-Madeller
quadrature rules® but,

bk r

since these rules allow
for negative quadrature
weights, they were insuffi-
cient because the L? error
(which should be positive)
in the discrete solution
sometimes evaluated to
a negative value due to
these weights.

78 CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

4.2 L? error control

As a first step towards fully unstructured 3d + ¢ spacetime PDE-driven
adaptation, let us demonstrate that our algorithm finds the optimal L?
approximant of a prescribed four-dimensional function. That is, we
will find the mesh that best approximates some scalar function u on a
prescribed polynomial basis of order p for a fixed computational cost,
represented as the number of degrees-of-freedom (DOF). The discrete
solution uy, ,, for some polynomial order p is obtained from the L2
projection of the analytic function, u, to the p-th order polynomial
basis:

up,, = arg inf ||u — Uh,p||i2(0) = arg inf / (u— Uh,p)zdx (4.1)
’Uh/pGVh,p vh,pevh,p

where u is the analytic function we wish to approximate with some
mesh M on a domain Q. Again, Q = [0,1]* is the unit tesseract.

The advantage of studying the performance of the adaptation algo-
rithm on this problem is that the error used to drive the adaptation
algorithm can be analytically computed from the L? error in contrast
to employing the error estimation techniques of Section 2.5. That is,
the output of interest is the exact L? error in the solution:

o) =) [() ax 42

Furthermore, Yano3 provides a framework within which the resulting

mesh size and aspect ratio distributions can be compared with ana-
lytic optimums so as to verify the mesh adaptation components in the
absence of approximations arising from error estimation techniques.
The rate matrices in the local error models (Section 2.5) obtained with
the exact L? error provide an excellent representation of the error over
a single element. The exact L? error from Equation 4.2 should asymp-
totically converge at a rate of h#*1 (h = v/DOF) for smooth solutions
as the mesh is refined3%%7.

Algorithm 4.1 describes the steps used to perform the adaptation in
the following subsections. Starting with an initial mesh M (here, the
Kuhn-Freudenthal triangulationss), the algorithm performs maxIter it-
erations of projecting the analytic function u onto the current mesh M
and performing the MOESS algorithm of Section 2.5, driven by the ex-
act L? error of Equation 4.2 with a fixed target DOF c;. The refinement
factor, hef, is set to 1.6. With this low refinement factor, one hundred
adaptation iterations are used to ensure there are enough adaptations
to obtain the optimal mesh. This optimal mesh, M?*, is then evalu-
ated for metric conformity and compared with analytic mesh size and
aspect ratio distributions, where available.

3. Yano, An Optimization Framework for
Adaptive Higher-Order Discretizations of Partial
Differential Equations on Anisotropic Simplex
Meshes. 2012

86. Houston et al., Adaptivity and A Posteriori
Error Estimation for DG Methods on Anisotropic
Meshes. 2006

87. Cao, An Interpolation Error Estimate on
Anisotropic Meshes in R" and Optimal Metrics
for Mesh Refinement. 2007

88. Kuhn, Simplicial Approximation of Fixed

Points. 1968

https://dx.doi.org/10.1073/pnas.61.4.1238
https://dx.doi.org/10.1073/pnas.61.4.1238

4.2. L> ERROR CONTROL 79

adaptLzError
input: My, c¢t, p, u, hye, maxIter
output: M*
1
2 M+ Mo
3 for iter=1,...,maxIter
4 up,p < solve Equation 4.1 on current mesh M
5 m < moess(M, uy,,, fref)
6 M « adapt(M, m) using Algorithm 3.6
7 MM
Boundary layer

The first function we consider is an extension of the regularized bound-
ary layer studied by Yano3 to four dimensions:

(o ,2,0) = expl(-x/€) + Ly ™ o B

(4.3)

The first term causes a strong gradation in the x direction whereas the

remaining three regularization terms ensure the aspect ratios in the y,
z and t directions remain bounded.

The mesh which best approximates the function in Equation 4.3 has

an optimal mesh grading () perpendicular to the wall (x = 0) with3

2p+5
e(p+1)2p+6)’

hy = hygexp(ky x), ky, = (4-2)

where /1, is a constant determined by the computational cost con-
straint. The aspect ratio distributions, a;, in the three remaining direc-
tions are

—_

1
e(p+1)

a; = ajgexp(kyx), ajp = , kay = i=vy,zt (45)

1
eﬁip+l

Here, € = 0.01, B, =271, B. = 4P*1 and B; = 67 L.

We restrict our attention to the discontinuous Galerkin (dG) solution
spaces (Equation 2.28) and study linear (p = 1) and quadratic (p = 2)
polynomial orders.

The convergence of the L? error and DOF counts are shown in Fig-
ure 4.1 for meshes optimized at 64k, 128k, 256k and 512k DOF for
both p = 1 and p = 2. The 64k DOF p = 2 adaptation sequence
exhibits the least overshoot (less than 20%) which is surprising con-
sidering this mesh contains the fewest number of pentatopes (about

By 'yp+1_|_ B2 Zp+1_|_:87f1tp+l'

Algorithm 4.1: Adaptation algorithm to
compute the optimal L2 approximant of
a 4d function u with a target computa-
tional cost ¢;, polynomial order p of the
discrete solution. The algorithm starts
from an initial mesh My and performs
maxIter adaptation iterations to produce
the optimal mesh M*.

3. Yano, An Optimization Framework for
Adaptive Higher-Order Discretizations of Partial
Differential Equations on Anisotropic Simplex
Meshes. 2012

<! Computing /1, o:

For the dG discretiza-
tion, the cost ¢; relates to
the metric complexity (by
combining Equations 4.4
and 4.5) via

1
c(m) = /0 h‘,ﬁayaza,dx = ¢Up

where v, is the volume of
the equilateral pentatope
(see Chapter 2). The only
unknown is the wall mesh
size hx,()-

8o CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

5k) and, in general, this would make the mesh adaptation task more
difficult. All other cases exhibit a DOF overshoot of about 30% but this
does not severely affect the convergence of the error as Figure 4.1(b)
shows a very smooth and steady convergence of the error as the mesh
is optimized over the adaptation iterations. Though 30 adaptation it-
erations were certainly enough to compute the optimal meshes, the
steady behaviour of the error over all 100 adaptation iterations is a
good verification of the adaptation algorithm.

Metric conformity is not as high as in the four-dimensional bench-
mark cases (see Table 4.1). Though the fraction of edges within the
quasi-unit range is acceptable (92-96%), the quality of the pentatopes
is quite poor (%gunit =~ 35%) which, in turn, causes the overshoot in
the expected number of pentatopes and, hence, DOF counts. The an-
alytic metric for this case is described by Equations 4.4 and 4.5 and
can be passed into Algorithm 3.7 (of Chapter 3). However, note, that
the mesh size in Equation 4.4 grows exponentially away from the
wall and would directly yield an unwieldy mesh size, much larger
than the length of the domain. As a result, the expressions for the
mesh size and aspect ratios are assumed reliable near the bound-
ary layer (here, we take [0,0.05]). Beyond this region, a cubic fit of
the mesh size obtained from the MOESS-optimized meshes (at a se-
lected DOF) is obtained and the aspect ratios are assumed constant
beyond this region. The fit for the p = 1 64k-optimized mesh re-
sults in hy(x) &~ —1.69x% 4 1.34x2 4+ 0.71x + 0.02, hy ~ 041, h. ~ 0.22
and h; ~ 0.15 which are used beyond the region [0,0.05]. Providing
this analytic metric through Algorithm 3.7 yields metric conformity
statistics of 95.42% in quasi-unit edge lengths and 48.1% in quasi-unit
pentatopes (quality greater than 0.8). Furthermore, the number of pen-
tatopes is 12,532 which is very close to the expected value of 12.8k for
a 64k p = 1 discretization for which the metric was optimized. Com-
paring these values with the first column of Table 4.1 shows that only
slight improvement is obtained with the analytic metric, though the
number of DOF is matched much better.

To verify the optimality of the produced meshes, consider the mesh
size and aspect ratios obtained near the x = 0 wall. Equations 4.4 and
4.5 suggest the mesh size and aspect ratios should be linear in x ver-
sus log(hy) and x versus log(a;) (i = y,z,t). Near the wall, the mesh
sizes are computed directly from the diagonal entries of the implied
metric of each pentatope. That is, h;(x) ~ (mK);il/ 2 (i=1,2,3,4, rep-
resenting x, y, z and t directions, respectively). The aspect ratios are
then a; = h;/hy (i = y,z,t). For both linear and quadratic polynomial
bases, the distributions of the mesh size and aspect ratios for the 512k-
optimized meshes are shown in Figure 4.2. A linear regression of the
size and aspect ratios in x — log(hy) and x — log(a;) (i = y,z, t) spaces

This is, in fact, pessimistic
since the eigenvectors of
the implied metric may
not be directly aligned
with the Cartesian axes.
The fact that the results
are in good agreement
with the analytic distribu-
tions is a good sign that
the various components
are working correctly.

4.2. L> ERROR CONTROL

L2 error

81

081
06
——p =1, dof = 64k
——p =1, dof = 128k
0.4 ———p =1, dof = 256k
——p=1,dof =512k
- = p=2,dof = 64k
0.2 - = p=2,dof=128k
- — p=2,dof = 256k
- — p=2,dof =512
0 ‘ ‘ ‘ ‘ ' 10 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100~ 0 20 40 60 80 100
adaptation adaptation
(a) DOF fraction (b) L? error
Figure 4.1: Convergence of the DOF (as
a fraction of the target) and the L2 error
in the solution for the boundary layer L?
error control case.
P=1 tlmin fmax favg %lunit Gmin Gavg %qunit # simplices % overshoot
64k 049 235 1.10 9240% 0.14 0.74 35.64 % 16.84k 31.59 %
128k 039 220 1.11 9235% 0.11 0.75 36.19 % 33.98k 32.73 %
256k 044 228 1.10 9218 % o0.11 0.75 36.99 % 68.54k 33.86 %
512k 031 254 1.10 9221 % 0.09 0.75 37.53 % 136.65k 33.45 %
P=2 Ylmin fmax Llavg %lunit Gmin Javg %unit # simplices % overshoot
64k 060 177 1.08 96.42% 0.37 0.79 52.95% 5.02k 17.66 %
128k o050 202 110 9248% 018 o074 33.89% 11.50k 34.72 %
256k 041 226 1.10 9320% 0.20 0.75 36.47 % 22.65k 32.71 %
512k 042 205 1.10 92.74% 0.18 0.75 36.47 % 44.88k 31.50 %

Table 4.1: Metric conformity statistics at
the final adaptation iteration for the L?
boundary layer error control case with
both p = 1 (top) and p = 2 (bottom)
discretizations.

82 CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

shows the distributions are well-aligned with the analytic mesh distri-
butions (shown in dashed). Table 4.2 tabulates the full set of regression
coefficients for all target DOF with both p = 1 and p = 2 discretiza-
tions. For p = 1, better alignment with the analytic values for both the
wall aspect ratios and gradings away from the wall is obtained as the
number of DOF is increased. For p = 2, the wall aspect ratios are all
fairly good and an improvement is seen in the gradings as the number
of target DOF is increased.

For a larger boundary layer thickness (¢ = 0.1), the fitted mesh
size and aspect ratio distributions are provided in Table 4.3. These
coefficients were obtained by fitting the mesh size and aspect ratios
for each pentatope with a centroid x-coordinate between x € [0,0.1].
Again, good conformity with the analytic optimal distributions are
observed for the p = 1 and p = 2 meshes. Specifically, the wall values
(hx0, ay0, az0 and a;) are close to the analytic ones whereas the rates
exhibit a larger deviation with the analytic values.

The meshes obtained at 512k for both p = 1 and p = 2 polynomial
orders are shown in Figures 4.3 and 4.4. As expected, the meshes at
constant x-hyperplanes exhibit the least anisotropy as there is little
gradation in the solution in the y, z or directions. All other bounding
cubes with a variation in x effectively resolve the boundary layer with
anisotropic simplices near the x = 0 boundary.

p=1 heo hyy kn, oayo ke, azp
Analytic | hj - 43.75 50.00 -50.00 25.00
64k 0.0155 0.0090 25.14 25.52 -26.57 14.32
128k 0.0121 0.0075 28.39 29.46 -31.14 16.02

256k 0.0095 0.0063 31.29 32.15 -35.22 17.09

512k 0.0076 0.0053 33.74 33.76 -38.05 18.18
p= 2 hx,O hjc,O khx Ilylo kay uz,O

Analytic | h} - 30.00 50.00 -33.33 25.00

64k 0.0146 0.0125 25.46 38.06 -24.69 22.41
128k 0.0119 0.0105 24.56 42.92 -28.12 21.51
256k 0.0100 0.0088 27.36 40.45 -29.80 22.11

512k 0.0081 0.0074 28.00 44.13 -31.04 22.06

ka
-50.00
-26.84
-31.79
-35.92
-38.92

z

ka,
-33-33
-25.96
-27.69
-30.55
-30.68

Table 4.2: Mesh size and aspect ratio re-
gression coefficients obtained from the
p = 1 (top) and p = 2 (bottom) op-
timized meshes for the L2 error control
boundary layer case with € = 0.01. Ana-
lytic values for the regression coefficients

at0
16.67
9-59
10.75
11.76

12.47

at,0
16.67
1539
14.55
14.64
15.22

ks,
-50.00
-26.11
-31.44
-35.58
-39.25

ka,
-33-33
-26.60
-28.50
-30.14
“31.74

are listed in the top rows.

4.2. L> ERROR CONTROL

h, = 0.0076 exp(33.74 x) (solid)

83

-3 L .

10 h, = 0.0053 exp(43.75 x) (dashed)

) h, = 0.0081 exp(28.00 x) (solid)

h; =0.0074 exp(30.00 x) (dashed)
10'4 L L L L) 1073 L - L L L J
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
X X
@h,p=1 b)h,p=2

ay
10°
102

10

ay =33.76 e;<p(-38.05 x) ksoljd)

a; =50.00 exp(-50.00 x) (dashed)

a = 44.13 exp(-31.04 x) (solid)
a; =50.00 exp(-33.33 x) (dashed)

100 L , 100 L L L L ,
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
X X
©@ay,p=1 day,p=2
aZ az
103F 10°F
102F
102k
N
10'
. g 10’
o a = 18.18 exp(-38.92 x) (solid)
107 F - .
a, = 25.00 exp(-50.00 x) (dashed) - .
a, = 22.06 exp(-30.68 x) (solid)
’ 5 a = 25.00 exp(-33.33 x) (dashed) . ,
10 10
0 0.01 0.02 0.03 0.04 005 0 0.01 0.02 0.03 0.04 0.05
X X
@a,,p=1 a,,p=2
a, ay
10%F 10%F
102§
10'¢ 10!
. a, = 12.47 exp(-39.25 x) (solid) -
10 N
a = 16.67 exp(-50.00 x) (dashed) . . .
a = 15.22 exp(-31.74 x) (solid)” ~ .
; o a; =16.67 exp(-33.33 x) (dashed)
10 " 4o ; ? | . .
0 0 0.01 0.02 0.03 0.04 0.05 "0 0.01 0.02 0.03 0.04 0.05
X X
@a,p=1 (h)a;, p=2

Figure 4.2: Mesh size and aspect ratio
distribution perpendicular to the x = 0
wall of the 512k-optimized meshes when
adapted to the L2 error between the
discrete solution and the 4d boundary
layer function of Equation 4.3. The an-
alytic distributions are plotted in dashed
whereas the fitted ones are plotted with
the solid lines.

84 CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

Figure 4.3: Bounding cube discretiza-
tions extracted from the final optimized

Y
SZ2— %er

<\
o=

MWV“‘%@%;%?;%}WW ﬁ:@ﬁ 7 pentatopal mesh at 512k DOF for the L:2
A M ‘A "‘" aliliseny irror control boundary layer case (p
am L
M g

Amy‘“my‘“ Alw‘wﬁ%ﬁmum

@©y=0 dy=1

v

NS>

SOS2S2STo ,

Aé.ﬁv‘v‘v

<< 'vvvv» >
= =2

T
AR AR
Ui

i
Ly

Wil
s

error control boundary layer case (p =

86 CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

p= 1 hx,() h;,() khx ay,() kay az,0
Analytic h;,o - 438 5.00 -5.00 2.50
64k 0.0835 0.0877 5.67 4.62 -7.45 2.49
128k 0.0785 0.0737 3.00 4.21 -5.06 2.06
256k 0.0643 0.0620 3.00 4.10 -3.84 2.13

512k 0.0517 0.0521 3.67 4.32 -4.19 2.25

p=2 hxo o Kne ayo ke, azp
Analytic | hy - 3.00 5.00 -3.33 2.50
64k 0.0906 0.1202 6.43 5.98 -7.37 3.02
128k 0.0899 0.1011 3.63 4.71 -4.73 2.43
256k 0.0762 0.0850 2.93 4.83 -3.03 248
512k 0.0651 0.0715 233 4.73 -3.33 236

Expanding spherical wave

Now, consider a function modeling the expansion of a spherical wave,
similar to the Tesseract Wave case of Chapter 3:

u(x,t) = koexp(—at) exp (—kl(r(t) - ||x]|)2> , xR te(0,1]

(4.6)
with r(t) = ro+vst, « =1, kg = 1, ky = 200, vs = 0.7, rg = 0.4. The
strength of the wave, initially ko, decays exponentially in time at a rate
of a. The parameter k; controls the width of wave strength ¢ about the
increasing radius r(t). In particular, since Equation 4.6 is a normal dis-
tribution; roughly 99.7% of u will lie within three standard deviations
of the nominal wave radius r(t). This thickness can be approximated

as
3

V2ki
For this problem, § ~ 0.15 and a total of 26 should be visibly refined

about the expanding sphere by the adaptation algorithm.
Since Equation 4.6 is a function of only r and ¢, we can perform

(4.7)

0~ 30 =

the adaptation sequence in two dimensions, resulting in a 1000-DOF
optimized mesh shown in Figure 4.5(a) and the solution on this mesh
in Figure 4.5(b). The expected resolution of the wave is obtained and
we should expect the same behaviour in the four-dimensional setting.

Performing the same adaptation sequence as in Algorithm 4.1 in
the four-dimensional setting yields the convergence of the DOF and
L? error over all target DOFs shown in Figure 4.6. The DOF over-
shoot at the final adaptation is much less than in the boundary layer
case, ranging from 14-20% and metric conformity is in fact much bet-
ter than in the latter case. Furthermore, Table 4.5 demonstrates that
97-99% of the edges are in the quasi-unit range and at least 48% of
the pentatopes have a quality greater than 0.8. Despite good metric

kaz ago kat
-5.00 1.67 -5.00
-7.90 1.67 -7.08
-3.48 140 -3.51
-3.46 144 -3.25
-4.17 1.53 -4.28

kuz at,() kllt

333 1.67 -3.33
-8.35 2.13 -8.81
-4.71 172 -5.28
-3.72 1.60 -3.29
-2.33 1.61 -2.72

Table 4.3: Mesh size and aspect ratio re-
gression coefficients obtained from the
p = 1 (top) and p = 2 (bottom) op-
timized meshes for the L2 error control
boundary layer case with € = 0.1. Ana-
lytic values for the regression coefficients
are listed in the top rows.

<I Remember Figure 1.2(b)?

This problem is actually

identical to the motivating

6-’ example in the introduc-
tion, whereby the feature
has been rotated about the
temporal axis.

ik

< Why 26?

99.7% of the function in

Equation 4.6 is contained

within (+) three stan-

4’ dard deviations (0) of the
expanding sphere radius.
Therefore, 3¢ should be
refined on either side of
this radius.

bk

4.2. L> ERROR CONTROL 87

conformity, the convergence of the L? error over the adaptation iter-
ations (Figure 4.6(b)) shows a much noisier behaviour. Further work
may include improving the implied metric calculation to obtain better
metrics from one adaptation sequence to the next. Also notice that,
although the error increases after its initial drop at the beginning of
the adaptation sequence, this behaviour is balanced by the decrease
in DOF (Figure 4.6(a)) as the metric optimization algorithm persists in
trying to match the requested target DOF. All adaptation sequences
begin with a large DOF overshoot and, as the adaptation proceeds,
the mesh is coarsened resulting in a closer match with the target DOFE.
For example, the p = 1 adaptation sequence with a target of 512k DOF
hovers at above 20% overshoot until roughly the 60 iteration at which
point the L? error increases as well.

The p = 1 and p = 2 optimized meshes obtained for the target
DOF request of 512k are shown in Figures 4.7 and 4.8, respectively.
The expected three-dimensional cones are seen at constant x, ¥ and
z hyperplanes whereas the initial sphere (with radius vy = 0.4) and
final sphere (with radius r; = 1.1) are correctly obtained at constant ¢
hyperplanes. Note that the expected width (26 ~ 0.3) of the solution
around the expanding wave is seen since the width of the mesh resolu-
tion is approximately one third in each spatial direction. Furthermore,
the stretching in the direction of the wave is evident; on average, two
elements are needed in the temporal direction. The maximum aspect
ratios for all meshes are tabulated in Table 4.4. These were computed
as the maximum aspect ratio (over all pentatopes) where the maximum
aspect ratio of a pentatope is computed from the eigenvalues of its im-
plied metric as dmax = VAmax/Amin- The p = 1 mesh optimized for
512k DOF exhibits the highest anisotropy, with the maximum aspect
ratio greater than 10°.

Order / DOF ‘ 64k 128k 256k 512k
p=1 2.07e+02 5.07e+02 8.32e+02 2.12e+03
p=2 6.53e+01 1.26e+02 2.60e+02 5.88e+02

Table 4.4: Maximum aspect ratios of
the pentatopal meshes optimized at var-
ious target DOF requests for the spheri-
cal wave L2 error control case (p = 1 and

p=2).

88 CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

1 1

0.8k 0.8

06k 06
- -

0.4k 0.4

02k 02

0% . 0

0 02 04 06 08 1 0) 04 06 08
(a) Mesh (b) Solution, u

Figure 4.5: 1000k-DOF (p = 1) opti-
mized mesh and solution # when adapt-
ing to the L2 error in Equation 4.6 in two
dimensions (r and t).

——p =1, dof = 64k
——p=1,dof = 128k
——p =1, dof = 256k
——p=1,dof =512k
- = p=2,dof = 64k
- = p=2,dof =128k
~ = p=2, dof = 256k
- — p=2,dof =512k [

I‘ \ -~ e v
I ~ N\ [A AP N -
1
i ——p=1, dof = 64k I\ VAN AN SN A4 94
——p=1,dof=128k | 103+ | ~x-" v i XY IR IPVINY
04 ——p =1, dof = 256k ' AN AN
——p=1,dof =512k LN .- A,
— = p=2,dof = 64k v s - v, AN VW
2 ‘ 2, dof = 128k 1 . ANV
- = = a
0 - - $=2: dof = 256k I ARTA MM
— — p=2,dof =512k S -
0 | | | | | 10.4 L | | | |
0 20 40 60 80 100 0 20 40 60 80 100
adaptation adaptation
(a) DOF (b) L? error

Figure 4.6: Convergence of the DOF (as
a fraction of the target) and the 12 error
in the solution for the spherical wave L?
error control case.

4.2. L> ERROR CONTROL 89

Figure 4.7: Bounding cube discretiza-
tions extracted from the final optimized
pentatopal mesh at 512k DOF for the L2
error control spherical wave case (p = 1).

\\\\\\\\

AN
\

MR

) .}\

:“\\\\: \\\\\
k““\ I\;:\;l?\\\\\\\

i

90 CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

Figure 4.8: Bounding cube discretiza-
tions extracted from the final optimized
pentatopal mesh at 512k DOF for the L2
error control spherical wave case (p = 2).

WSS
SRR
NN ‘ﬁn

QW
NS
R

|

Il

M
77

(r x

I
\
%

A
i
()
|
5 ‘
7
/ﬁzﬁ 7
%

N
N
\
)
W
A
A
N
7
7
7

%
]
i
2
2

b
717

JAN
S0

X7
)
)

71

VAl
L7

<7\

</

/>

L
11
L

7

=
vz,

]
f==22

4.2. L> ERROR CONTROL 91

P=1 tlmin fmax gavg Y%lunit Gmin favg Yo unit
64k o057 188 1.08 97.72% 0.28 0.80 53.31%
128k 055 190 1.08 97.92% 023 079 51.85%
256k 0.58 1.93 1.09 97.72% 024 0.79 48.11 %
512k 0.54 208 1.09 97.57% 0.11 0.79 51.76 %
P=2 Ymin fmax gavg %lunit Gmin favg YoGunit
64k 062 176 1.08 98.71% 0.35 0.79 50.15 %
128k 060 1.60 1.07 99.31% 031 0.79 51.99 %
256k 0.55 1.86 1.08 9747 % 029 0.79 49.59 %
512k 056 1.96 1.08 97.40% 0.20 0.79 49.63 %

Convergence of the L? error

We close this section by studying the convergence of the output func-
tional, 7 (u), of Equation 4.2 with mesh refinement. The L? error in
the solution and approximate mesh size, i ~ v/DOF, from the last five
adaptation iterations are plotted in circles and these values from the
last two target DOF requests are fit in logh — log £ (€ here being the
exact L2 error) space to estimate the rate of convergence. The bound-
ary layer function of Equation 4.3 is four-dimensional and we expect
an asymptotic convergence rate of approximately hP 138687, This is
certainly observed in the rates obtained for both p = 1 and p = 2
as seen in Figure 4.9(a) though the rates are slightly higher than ex-
pected. This may be due to the fact that the meshes are still in the
pre-asymptotic range and would likely approach rates of & ~ hP*!
should finer mesh resolutions be studied. Unfortunately, the compu-
tational resources needed to run more expensive simulations were not
available at the time of this work.

For the spherical wave case, the fitted convergence rates are even
more accelerated than #”*1 which may be due to the fact that the func-
tion is effectively two-dimensional in an r — t coordinate system. Thus
the convergence rate should approach h2(P*1), though, again the re-
sults obtained from the simulations exhibit pre-asymptotic behaviour.

To verify that the algorithm can indeed reach the asymptotic range

with sufficient mesh resolution, consider a very simple four-dimensional

function:

u(x,y,z,t) = exp(—At)sintxsin ty sinz, x,y,z,t € [0,1]. (4.8)

With A = 5, the initial three-dimensional sinusoidal function decays

quickly in the temporal direction and the function should require smaller

elements near the t = 0 boundary with larger ones near the t = 1
boundary. Again, for both p = 1 and p = 2 solution orders, Algo-
rithm 4.1 was used to generate optimal meshes for 64k, 128k and 256k

simplices

simplices

% overshoot

14.83k 15.84 %
29.64k 15.79 %
58.72k 14.69 %
116.86k 14.12 %

% overshoot

4.87k 14.12 %
10.21k 19.61 %
20.12k 17.87 %
39.76k 16.47 %

Table 4.5: Metric conformity statistics at
the final adaptation iteration for the L?
spherical wave error control case with
both p = 1 (top) and p = 2 (bottom)
discretizations.

3. Yano, An Optimization Framework for
Adaptive Higher-Order Discretizations of Partial
Differential Equations on Anisotropic Simplex
Meshes. 2012

86. Houston et al., Adaptivity and A Posteriori
Error Estimation for DG Methods on Anisotropic
Meshes. 2006

87. Cao, An Interpolation Error Estimate on
Anisotropic Meshes in R" and Optimal Metrics

for Mesh Refinement. 2007
J /

92

CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

target DOF requests which should be sufficient to reach the asymp-

totic convergence regime. Figure 4.10 demonstrates that, indeed, the

L? error in the solution decays at a rate of #7*! which is a verification

that the four-dimensional adaptation algorithm is working correctly

and suggests the previous cases require more expensive simulations

to reach the asymptotic range.

L error L2 error
10'r 1021
102+
10°F
108+
——p=1,E~n24 —p=1,E~nS18
——p=2,E~nS75 —— =2 E~h3%
104 ‘ ‘ ‘ ‘ s s -4 ‘ ‘ ‘ ‘ s s
0.035 0.04 0.045 0.05 0.055 0.06 0.035 0.04 0.045 0.05 0.055 0.06
h ~ dof ' h ~ dof "4
(a) Boundary layer (b) Spherical wave
Figure 4.9: Convergence of the L2 error
with mesh refinement for the boundary
layer and spherical wave cases (p = 1
L2 error and p = 2).
1021 . 2
Figure 4.10: Convergence of the L* error
with mesh refinement for the sinusoidal
decay case (p = 1 and p = 2) verifies the
hP*1 expected convergence rate.
10° 1
——p=1,E~h210
—— =2 E~ 1%
10-4 L L L L L
0.04 0.045 0.05 0.055 0.06

h ~ dof 14

4.3. SCALAR ADVECTION-DIFFUSION 93

4.3 Scalar advection-diffusion

We now demonstrate the mesh adaptation algorithm applied to the
scalar advection-diffusion equation. The method of manufactured so-
lutions (MMS) is used to compute the source term in Equation 2.24
by substituting a prescribed analytic solution into the left-hand side of
the PDE, resulting in

s(u,x,t) = ?Tbtl +c¢-Vu—vVu. (4.9)

Dirichlet boundary conditions with the exact solution are applied on
the spatial boundaries and the initial condition is set to u(x,0).

The output of interest is the integral of the squared-solution over
the domain, resulting in the analytic and discrete versions below:

J(u) :/Qude, J(uy) :/M u? dx. (4.10)

Adapting to the output in Equation 4.10 should resolve the entire so-
lution and the L? error in the solution should exhibit an asymptotic
convergence rate of 1P+ as the mesh is refined.

The major difference between the L? error control cases of Sec-
tion 4.2 and the current studies is that the solution is obtained by
solving the linear system of equations that arise when discretizing the
scalar advection-diffusion PDE and that the dual-weighted residual
error estimation technique is used to drive the adaptive process.

The overall procedure used here is outlined in Algorithm 4.2. The
algorithm is nearly identical to the one used to drive the L? error con-
trol cases with the exception that Line 4 employs the solution to the
PDE and Line 5 employs dual-weighted residual techniques to model
the local error during the MOESS algorithm in contrast to using the
analytic error of the L? error control cases. In the applications that
follow, the refinement factor will again be set to I = 1.6 and 100
adaptation iterations will be used to find the optimal mesh for target
DOF requests of 64k, 128k, 256k and 512k.

94 CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

adaptAdvectionDiffusion
input: My, ct, p, u, hye, maxIter
output: M*
1
2 M+ Mo
3 for iter=1,...,maxIter
4 up,p < solve Equation 2.24 on current mesh M
5 m <+ moess(M, Mh,p,href) using Equation 2.39
6 M « adapt(M, m) using Algorithm 3.6
7 MM
Boundary layer

Here, we will study the same function as in Section 4.2. The convective
velocity is ¢ = (0.5,0.5,0.5)" and the viscosity is v = 1. Figure 4.11
shows that the error indicator successfully decreases at the onset of the
adaptation sequence. However, as the adaptations progress, there is a
noticeable increase in the error which subsequently appears to level
off. Furthermore, the DOF counts are overshot in comparison to the
requested values. In contrast to the L2 error control cases (particularly
the spherical wave case) the DOF overshoot is not corrected over the
course of the adaptations and remains quite high.

Table 4.6 quantifies the metric conformity statistics along with the
fractional overshoot in the expected number of pentatopes (which is
the same as the overshoot in the DOF for the current discontinu-
ous Galerkin discretization). Though the fraction of edges within the
quasi-unit range is acceptable (between 91-93%), the number of pen-
tatopes of quality greater than 0.8 remains in the the 20-25% range and
is highest (30%) for the 64k DOF p = 2 discretization. The overshoot in
number of pentatopes (equivalently, in the DOF) is quite large, rang-
ing from 29-43%. The mesh appears incapable of producing high qual-
ity pentatopes conforming to the input metric field which is possibly
caused by a poor incoming metric field.

Nonetheless, the p = 1 and p = 2 optimized meshes at 512k DOF
obtained for this case are shown in Figures 4.12 and 4.13 and exhibit
the expected refinement in the boundary layer near the x = 0 wall.

The convergence of the global error estimate and, hence, output
error over the course of the adaptations (see Figure 4.14) further ex-
hibits the noisy behaviour and makes it difficult to assess whether

these quantities exhibit the expected asymptotic convergence rates of
h2r 89,

Algorithm 4.2: Adaptation algorithm to
compute the optimal mesh to resolve the
solution to a 3d + t advection-diffusion
PDE with a target computational cost c;,
polynomial order p of the discrete solu-
tion. The algorithm starts from an initial
mesh M and performs maxIter adap-
tation iterations to produce the optimal
mesh M*.

89. Carson et al., Analysis of Output-Based
Error Estimation for Finite Element Methods.

2017

https://dx.doi.org/http://dx.doi.org/10.1016/j.apnum.2017.03.004
https://dx.doi.org/http://dx.doi.org/10.1016/j.apnum.2017.03.004

4.3. SCALAR ADVECTION-DIFFUSION

Ar
RLEAVRN LRI RN T L S R

——p =1, dof = 64k
0.5 ——p =1, dof = 128k
——p =1, dof = 256k
——p=1,dof =512k
- = p=2,dof = 64k
- = p=2,dof =128k
= = p=2,dof =256k
; - - p=2,dof=512k
% 20 40 60 80 100
adaptation
(a) % DOF
p= 1 lmin fmax eavg Yol unit Jmin
64k 048 225 1.11 91.34% 0.16
128k o050 237 1.10 91.93% 0.13
256k 040 291 1.10 91.11 % 0.08
512k 042 3.06 1.10 91.23% 0.07
p = 2 lwwin Mawes ﬁavg %gunit Jmin
64k 056 1.94 1.10 92.73% 0.25
128k 042 221 111 92.08% 0.19
256k 0.51 2.22 1.10 93.40 % 0.23
512k 036 239 1.10 92.63% 0.11

95

error indicator

10" F

avg
0.70
0.71
0.69
0.70

favg
0.73
0.72
0.72
0.72

Younit
21.66 %
23.81 %
21.04 %
23.64 %

Jounit
29.50 %
24.61 %
26.54 %
26.88 %

We can, however, assess the convergence of the L2 error as well

as the error indicator with mesh refinement. Figure 4.15 shows the

convergence of these quantities for the range of DOF requests studied

here, whereby the rates were estimated by performing a linear fit of
the error-DOF values from the last two mesh refinement levels, with

the last five data points from the adaptation iterations. The error indi-

cator appears to converge faster than the expected h?” rate and the rate

for the L? error is near the expected h? rate for the p = 1 discretization

and slower than the expected /° rate for p = 2. It is likely that the

DOF range studied here is still pre-asymptotic. It would be worthy to

investigate alternative discretizations, such as the continuous Galerkin

40 60 80 100
adaptation

(b) Error indicator

Figure 4.11: DOF fraction and error esti-
mate versus adaptation iteration for the
boundary layer advection-diffusion case.

simplices % overshoot

17.32k 35.35 %
34.80k 35.93 %
73.01k 42.60 %
143.05k 39.70 %

simplices % overshoot

5.52k 29.42 %
11.03k 29.26 %
21.96k 28.66 %
44.60k 30.65 %

Table 4.6: Metric conformity statistics
at the final adaptation iteration for the
advection-diffusion boundary layer case
with both p = 1 (top) and p = 2 (bot-
tom) discretizations.

CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

96

1 advection-diffusion

dary layer case

~
o
-
N
-
]
N
]
<
[0
)
&
e}
]
N
-
£
i)
ol
©)
o
!
<+
[
-
=]
o0
o
=

DOF for the p
boun

1

(b) x

dy=1

@y=0

1

f) z

(h)t=1

@t=0

97

4.3. SCALAR ADVECTION-DIFFUSION

2 advection-diffusion

dary layer case

~
o
-
N
-
]
N
]
<
[0
)
&
e}
]
N
£
i)
ol
©)
@
!
<+
[
-
=]
o0
o
=

DOF for the p
boun

ST - \ o YANA
AN IS N VNN
Wy ¢ W - Voo
vy Moy WKy

\ﬂ'

A

ﬂmuﬂ
O
vt

@y=0

(h)t=1

@t=0

98

method, which has the advantage of requiring less DOF to reach a cer-
tain error level. For the same DOF, however, the continuous Galerkin
discretization would produce larger meshes (with more pentatopes)
which further motivates the development of the meshing software in

CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

a parallel setting.

error estimate

10"

true output error

error indicator

10°

107!

1072

_ .
, dof = 64k 10
——p=1,dof = 128k
L ——p =1, dof = 256k
s ——p =1, dof =512k 100
' - = p=2,dof= 64k
,“ - = p=2,dof = 128k
f = 256k
P\ , do 56 10_1 L
Eooy
102 F
——p=1,dof =64k k-
108 F < o l——p -1, dof = 128k
L ——p =1, dof = 256k
——p=1,dof =512k
4 - - p=2,dof =64k |"
b { 107 - — p=2,dof =128k |I,
- = p=2,dof =256k |
- — p=2,dof =512k
| | | |) 10.5 L | |]
0 20 40 60 80 100 0 40 60 80 100
adaptation adaptation
(a) Error estimate (b) Output error
Figure 4.14: Error estimate and output
error versus adaptation iteration for the
L2 error
i 10"
(-}
/ 8
8
L 1021
8
o
——p =1, |E| ~ h28 —p=1,[E~ 2%
—p =2, || ~ h*82 —p=2 || ~h'
L L L L L L -3 L I L L L L
0.035 0.04 0.045 0.05 0.055 0.06 0.035 0.04 0.045 0.05 0.055 0.06
h ~ dof 1’4 h ~ dof /4

(a) Error indicator

Expanding spherical wave

Now, let us revisit the expanding spherical wave case introduced ear-
lier. As in the boundary layer case, we will use the method of man-

(b) L? error

Figure g4.15: Convergence of the er-
ror indicator and L2 solution error with
mesh refinement for the boundary layer
advection-diffusion case (p =1 and p =
2).

4.3. SCALAR ADVECTION-DIFFUSION 99

ufactured solutions and compute the source term by substituting u
for the analytic solution of Equation 4.6. The parameters have been
slightly modified from the original L? error control case. In particular,
the temporal decay rate is @ = 0.1, the initial wave strength is kg = 5
and the spatial decay rate is ky = 1000. The sphere begins at a radius
of rp = 0.3 and propagates with a constant velocity of v = 0.5, thus
the final sphere (with radius r = 0.8) should be entirely contained
within the tesseract domain. When solving the PDE of Equation 2.24,
the convective velocity is ¢ = 0.5e, (where e, is the unit vector in the
radial direction) and the viscosity is v = 0.01.

(a) Solution, u

For both p = 1 and p = 2 discretizations, 100 adaptations were run
for target DOF requests of 64k, 128k, 256k and 512k. The convergence
of the DOF (as a fraction of the request) and error indicator displayed
in Figure 4.17 shows that the DOF overshoot ranges from roughly 18-
38% and that the error indicator, in contrast to the boundary layer case,
exhibits a steadier convergence as the adaptations progress.

Metric conformity at the final adaptation iteration is better for this
case, likely resulting from the smoother behaviour of the error over
the adaptation iterations, thus producing more realizable metrics for
the mesher. The fraction of edges in the quasi-unit range is excellent,
lying between 91-98% and the fraction of pentatopes with a quality of
at least 0.8 is between 21-28% for the p = 1 case and is as high as 39%
for the p = 2 case.

/{/,)/
/)

7,

0.5, 1
(b) Adjoint,

Figure 4.16: Solution u (left) and adjoint
(right) obtained on a p = 1 1000-DOF
optimized mesh for the solution of the
advection-diffusion equation with MMS
(using Equation 4.6) in a 1d + t spherical-
temporal coordinate system.

0.75
0.5
0.25
0

100

0.4

0.2

CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

——p =1, dof = 64k
——p =1, dof = 128k
——p =1, dof = 256k

——p=1,dof =512k
- = p=2,dof =64k
- = p=2,dof = 128k
= = p=2,dof = 256k
- = p=2,dof =512k
20 40 60 80
adaptation
(a) DOF
p= 1 émm gmax gavg 0/Oeum"c Amin
64k 052 203 1.09 94.83% 0.26
128k 040 213 1.10 092.83% 0.12
256k 045 228 110 91.75% 0.07
512k 039 260 1.10 91.39% 0.05
p=2 lmin fmax Eavg Yol unit Amin
64k 058 179 1.07 97.72% 0.24
128k 054 183 1.08 96.14% o0.29
256k 051 1.98 1.08 09532% o0.17
512k 049 218 1.10 93.11% 0.13

error indicator
100

el

1020 e e
\
N S e - -~ N~ —-~—— -~ m =~~~
10° ‘ ‘ ‘ ‘ :
0 20 40 60 80 100
adaptation
(b) Error indicator
Figure 4.17: DOF fraction and error indi-
cator versus adaptation iteration for the
spherical wave advection-diffusion case.
Javg ~ Yofunit # simplices % overshoot
0.73 28.40 % 16.02k 25.17 %
0.70 20.28 % 34.42k 34.46 %
0.70 19.73 % 70.29k 37.29 %
0.70 20.84 % 141.62k 38.30 %
Javg ~ Yoqunit # simplices % overshoot
0.76 39.47 % 5.04k 18.10 %
0.75 136.03 % 10.25k 20.11 %
0.73 29.12 % 21.71k 27.21 %
0.71 22.90 % 45.11k 32.17 %

Table 4.7: Metric conformity statistics
at the final adaptation iteration for the
spherical wave advection-diffusion case
with both p = 1 (top) and p = 2 (bot-
tom) discretizations.

4.3. SCALAR ADVECTION-DIFFUSION 101

The p = 1 and p = 2 meshes shown in Figure 4.18 and 4.19 exhibit
the expected resolution of the sphere at the temporal slices and the
cone along the spatial slices. Note that since the wave only achieves
a final radius of rp= 0.8, there is little resolution inthe x =1, y =1
or z = 1 bounding cubes. Also observe that the width of the wave is
roughly one tenth the length of the domain in each direction which
is expected given the parameters used to define Equation 4.6. With
k1 = 1000 and, again, exploiting the fact that 99.7% of the solution will
be contained within three standard deviations of the sphere radius
suggests that the wave has a width of 6§ = 3/1/2k; & 0.07. Further-
more, only two elements are needed in the temporal direction.

The error indicator in Figure 4.20(b) converges at a rate of h%% for
the p = 1 discretization and h*%? for the p = 2 discretization, which
is close to the expected h?F rate®9. However, the convergence of the
output in Figure 4.20(a) suggests the solution is still underresolved.
The analytic output value for this case was estimated by performing
a 1d +t (hence, two-dimensional) adaptation sequence in spherical-
temporal coordinates in v € [0,1] and ¢ € [0,1]. In three dimensions,
the maximum radial coordinate is rmax = V/3, therefore solving in
1d 4+t in a domain r x t = [0,1] x [0,1] would not provide an accu-
rate estimate of the output. However, with the current parameters, the
function in Equation 4.6 decays very quickly away from the expanding
sphere. Therefore, the contribution of the output in Equation 4.10 for
r > 1is very small. To quantify this, the adaptation sequence was per-
formed in the — t domain of [0,1] x [0,1] and also in [0, /3] x [0,1].
For reference, the primal and adjoint solutions obtained witha p =1
1000-DOF optimized mesh for the 1d + t case are shown in Figure 4.16.
After fifty adaptation iterations for ¢; = 20,000 with p = 3, both out-
put values converged to the same result of J1,;(u) ~ 0.28336189 with
an error estimate on the order of 107. The resulting output for our
problem is then

/2 /2
Taar (1) = rass (1) / sin ¢ dep / 46 ~ 0445103816 (4.11)
0 0
since we are only solving for one eighth of the expanding sphere. The
p = 1 discretization achieves an output value of 0.355 at 706k DOF
whereas the value obtained at 68ok DOF for p = 2 is 0.369, indicating
we are still quite far from resolving this function. Either a higher DOF
count should be used, in which a parallel implementation of the metric
optimization would be beneficial, or a continuous Galerkin (cG) dis-
cretization can be investigated, which would once again benefit from
a parallel implementation of the meshing algorithm since the number
of pentatopes would grow rapidly with even a moderate DOF count
for a cG discretization.

89. Carson et al., Analysis of Output-Based
Error Estimation for Finite Element Methods.

2017

https://dx.doi.org/http://dx.doi.org/10.1016/j.apnum.2017.03.004
https://dx.doi.org/http://dx.doi.org/10.1016/j.apnum.2017.03.004

CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

102

1 expanding spherical

~
o
-
N
-
]
N
]
<
[0
)
&
e}
]
N
o~
£
i)
ol
©)
)
!
<+
[
-
=]
o0
o
=

DOF for the p
wave case.

N

PAVEYa~avasw\

I @WMWWMWWW ; ;
\W\\\\\WWWMNMMMW, T © M&%WWMWW o
7 7

(h)t=1

@t=0

103

4.3. SCALAR ADVECTION-DIFFUSION

2 expanding spherical

~
o
-
N
-
]
N
]
<
[0
)
&
e}
]
N
-
£
i)
ol
©)
&
!
<+
[
-
=]
o0
o
=

DOF for the p

Jw S A
VAVAVANAY
s

i

g

Wy

R

1
1

dy=1
) z

(b) x

i

@y=0

s
0

. W

(h)t=1

@t=0

104 CHAPTER 4. APPLICATIONS TO ADAPTIVE SIMULATIONS

error indicator
,,,,, 107

0.365 1

0.355
0.35
0.345
0.34

0.335

0.33

——p=1,J=0.355 at 706k DOF °
——p=2,J = 0.369 at 680k DOF
0325 ‘ : - |

——p=1,[E|~ 2%
——p=2E~h*®
‘

0.03 0.035 004 0045 005 0055 006 0.065 0.035
h ~ dof 4
(@) Output

4.4 Perspectives

This chapter demonstrated the first four-dimensional adaptive numer-
ical simulations. By adapting to the exact L? error between a pre-
scribed function and its discrete representation in a polynomial basis,
the correct mesh size and aspect ratio distributions were obtained for
a function with a rapid variation near one of the boundaries of the
domain. Similarly, the L? error control of a four-dimensional function
simulating the expansion of a spherical wave was effective in resolv-
ing the strength of the wave as it propagated in time. In particular,
the meshes exhibited a significant amount of clustering within 99.7%
of the wave radius and metric conformity was very good for this case.
The ability of the algorithm to reach this regime was demonstrated for
a benign four-dimensional function.

Furthermore, the algorithm effectively refined the same functions
when substituting the exact L? error with error estimates obtained
from the solution of the advection-diffusion equation with the method
of manufactured solutions. In the case of the expanding spherical
wave, the error converged steadily throughout the adaptation itera-
tions but the computational resources available were insufficient to
reach the asymptotic regime. The boundary layer case exhibited a
rapid drop in error followed by a slight increase which steadied off as
the adaptations proceeded. The metrics obtained from the optimiza-
tion in Section 2.5 can be improved in the future. Good metric confor-
mity, as in the case of the expanding spherical wave, is indicative of
much more realizable metrics obtained from the metric optimization

0.04 0.045 0.05 0.055 0.06

h ~ dof 14

(b) Error indicator

Figure 4.20: Convergence of the output
and error indicator with mesh refine-
ment for the spherical wave advection-
diffusion case (p =1 and p = 2).

4.4. PERSPECTIVES 105

Property BL (L?) SW (L?) BL (PDE) SW (PDE)
interior vertices, v; 4.0k 3.0k 5.0k 4.0k Table 4.8: Valency statistics for the p =
mean valency, ¥y, 115.45 114.61 118.94 112.90 1 512k DOF-optimized meshes in this
boundary vertices, vy, 4.0k 5.0k 3.0k 4.0k Chlipt?r ior the boundary layer (BL) and
spherical wave (SW) cases for either the
mean valency, Uy, 56.27 51.94 59.65 60.22 L? error control or advection-diffusion
edges, e 102.0k 93.0k 99.0k 98.0k (PDE) problems.
mean valency, 7, 13.43 12.62 14.48 13.85
triangles, ¢ 312.0k 275.0k 314.0k 305.0k
mean valency, 7 4.38 4.24 4.56 4.46
tetrahedra, f 355.0k 308.0k 366.0k 351.0k
mean valency, V¢ 1.93 1.90 1.96 1.94
Order p=1 p=2 p=3 p=4
Case dG cG dG cG dG cG dG cG

Boundary Layer (L?) | 683.2k 8.2k | 2.0M 110.0k | 4.8M
Spherical Wave (L?) 584.3k 8.0k | 1.8M 100.6k | 4.1M
Boundary Layer (PDE) | 715.2k 7.3k | 221M 106.2k | 5.0M
Spherical Wave (PDE) | 679.9k 7.7k | 2.0M 105.9k | 4.8M

procedure. A more steady convergence of the error indicator over the
adaptation iterations was seen for this case.

Parallel implementations of both the metric optimization procedure
as well as the meshing tool would allow larger and more complex
problems to be studied. An investigation into less computationally ex-
pensive discretizations, such as the continuous Galerkin method, are
also very attractive. This is motivated by the valency statistics of the
largest meshes (optimized for p = 1 512k dG DOF) in this chapter (see
Table 4.8). Furthermore, the costs of the cG discretization is dramati-
cally lower than the dG one, as shown in Table 4.9.

5235k | 9.6M 1.2M
468.6k | 82M 1.1M
518.9k | 10.oM 1.2M
509.1k | 9.5M 1.2M

Table 4.9: Cost of the discontinuous
(dG) and continuous (cG) discretizations
with various polynomial orders p for the
meshes optimized at p = 1 512k DOF in
this chapter.

CONCLUSIONS

Upward, not Northward®°.
— Edwin A. Abbott

5.1 Summary

Contributions

The work in this thesis began with a quest for a four-dimensional
meshing algorithm to support mesh-adaptive numerical simulations
for the solution of unsteady three-dimensional problems. As such, we
demonstrated the first four-dimensional anisotropic meshing capabil-
ity, founded on a method for performing local mesh modification oper-
ators within a dimension-independent cavity framework. First, the de-
sign of this mesh modification operator was discussed so as to ensure
(1) a valid mesh and (2) a valid geometry discretization are both main-
tained throughout the adaptation process. Our capability was then
demonstrated on benchmark three-dimensional problems. Driven by
a gap in the literature in describing and justifying the scheduling of
local operators, we then studied how the adaptation components in-
fluences metric conformity as well as the target number of simplices.
Next, four-dimensional benchmark cases were developed and used to
demonstrate the first anisotropic four-dimensional meshing capability.

We then used the meshing tool within the entire adaptive frame-
work to find the optimal mesh for representing a function of four
variables. The meshes produced by the algorithm showed the ex-
pected sizes and aspect ratios. Finally, we demonstrated the first four-
dimensional adaptive numerical simulations, driven by the solution to
the advection-diffusion equation, on two types of problems.

CHAPTER 5

108 CHAPTER 5. CONCLUSIONS

Conclusions

Chapter 3 demonstrated the importance of vertex smoothing, limiting
the creation of short edges (when inserting vertices) and of dividing
the algorithm into two stages with different target split lengths. In
particular, metric conformity in terms of quasi-unit edge lengths and
simplices was improved when these components were enabled. Fur-
thermore, a factor was introduced to control the metric volume upon
inserting a vertex in four dimensions. We determined this factor was
important for matching the expected number of pentatopes. Some
statistics of the valencies in the produced meshes indicate that the ball
of a vertex approaches the geometry of a 120-cell. Information from
theses meshes also allowed us to compare the costs of the continuous
and discontinuous Galerkin finite element discretizations for the same
meshes.

In Chapter 4, the expected mesh size and aspect ratio distributions
were met when adapting to the exact L? error of a boundary layer-
type function. This is a good verification that the various components,
ranging from the error sampling and model synthesis in MOESS, to
the mesher itself, were working correctly in the setting of an adaptive
numerical simulation. Furthermore, an expanding spherical wave was
modeled and exhibited the expected mesh refinement. The adaptive
algorithm produced meshes with highly stretched elements along the
path of the propagating feature in the spacetime domain.

The adaptive advection-diffusion cases revealed that the mesher
was still effectively capturing the solution features for both a bound-
ary layer-type function as well as that of an expanding spherical wave
though more computational resources are needed for larger simula-
tions. Similar to the L2 error control setting, the algorithm, when ap-
plied to the expanding spherical wave case, determined roughly two
elements were needed in the temporal direction.

5.2 Future work

Based on the above conclusions, we recommend the following areas of
future work.

Improving the metrics from MOESS

The metrics produced by MOESS can be improved in a variety of ways.
First, the addition of a volume- or quality-based term to the objective
function of Equation 2.23 may be useful. The lack of the aforemen-
tioned term in the implied metric calculation is a limitation of the
current work. Furthermore, the metric optimization itself can be im-
proved by producing more realizable metrics. In particular, metric

5.2. FUTURE WORK 109

requests may not necessarily align with the boundaries of the domain
and can cause issues with metric conformity near these boundaries. It
would be useful to either account for this alignment within the met-
ric optimization statement itself, or perform a post-processing of the
metric produced by the optimization.

Conversely, many meshing technologies such as bamg??, EPIC5° and
fefloa® pre-process the input metric by either re-aligning it with the
domain boundaries or smoothing the components throughout the do-
main. Whether MOESS post-processes or the mesher pre-processes the
target metric, an important contribution would be the investigation of
an efficient tool that would eliminate the issues caused by poorly op-
timized metrics.

Improving the heuristic nature of the mesh adaptation algorithm

As noted in Chapter 3, our algorithm for producing a metric-conforming

mesh is heuristic. It would be worthwhile to find a single measure
of metric-conformity and pose the metric-conforming mesh adapta-
tion problem as a variational statement. The density of vertices, their
coordinates, and the mesh topology would all be optimized simulta-
neously. This single objective should be sensitive to (1) changes in
element sizes so as to create a uniform mesh under the metric and (2)
the creation of degenerate elements.

This idea is reminiscent of our approach using isometric embed-
dings and restricted Voronoi diagrams whereby we initially laid out
(and fixed) the number of vertices throughout the domain. Next,
the vertex coordinates (and mesh topology) were simultaneously op-
timized by minimizing the centroidal Voronoi tessellation energy. Ul-
timately, the process is still divided into two stages: (1) optimizing
vertex densities and (2) optimizing the topology and coordinates. Due
to the discrete nature of the mesh optimization problem, both stages
are still important, though the second stage would be much more rig-
orous than the algorithm presented in Chapter 3.

Parallelization

To explore larger problem sizes, the meshing tool should be extended
to perform the adaptation in parallel, primarily in a distributed mem-
ory environment. Preliminary work has been done in three dimensions
by Digonnet®? and Loseille5®, whereby mesh partitions are adapted by
keeping the boundaries of these partitions fixed. Once the volume par-
titions have been adapted, the boundaries of the partitions can then be
adapted. This should be done such that the mesher works directly
with the partitions used by the solver.

29. Hecht, BAMG: Bidimensional Anisotropic
Mesh Generator. 1998

50. Michal et al., Anisotropic Mesh Adaptation
through Edge Primitive Operations. 2012

66. Loseille, Metric-Orthogonal Anisotropic
Mesh Generation. 2014

82. Digonnet ef al., Massively Parallel
Anisotropic Mesh Adaptation. 2017

56. Loseille et al., Unique Cavity-Based
Operator and Hierarchical Domain Partitioning

ﬁw’ Fast Parallel Generation uf'/\)ziautmpif

Meshes. 2017

https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.10.400
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.10.400
https://dx.doi.org/10.1177/1094342017693906
https://dx.doi.org/10.1177/1094342017693906
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008
https://dx.doi.org/https://doi.org/10.1016/j.cad.2016.09.008

110 CHAPTER 5. CONCLUSIONS

Treatment for complex geometries

Most of the problems studied in this work, with the exception of
the simple three-dimensional geometries of Chapter 3, were straight-
sided. First, the mesher should be applied to more complex three-
dimensional domains; a first step would be to assess the meshing ca-
pability on domains described by the Geometry and Mesh Generation
Workshop (GMGW)9*.
metric with the geometry will be important. Furthermore, the issue of

The aforementioned problem of aligning the

interpolating metrics for vertices that lie outside the background mesh
will also be important.

In order to support high-order adaptive numerical simulations about

complex geometries, the faces on the geometry will need to be curved?>.

In the anisotropic setting, the interior mesh will also need to be curved
to avoid producing inverted mesh elements (see Figure 5.1).

The state-of-the art in producing curvilinear meshes is either to (1)
solve an analogous physics-based problem to compute the location of
the interior curvilinear vertices following the influence of the bound-
ary displacements or (2) solve an optimization problem to simultane-
ously displace both boundary and interior vertices of the curvilinear
mesh. Both linear and nonlinear techniques have been investigated
in the former?. The latter optimization-based techniques have been
investigated by the work of Persson4 and Roca, Girones, Gargallo-
Peir6 and Sarrate?>'°'. Unfortunately, this technique optimizes a qual-
ity measure that is sensitive to the location of the quadrature points
within the element and may not be able to guarantee positivity of
the Jacobian determinant throughout the curvilinear element. Fur-
thermore, Toulorge et al.’*> have investigated optimization-based ap-

91. Chawner ef al., 2nd AIAA Geometry and
Mesh Generation Workshop. 2019

Figure 5.1: Construction of a curvilinear
mesh from a straight-sided one.

92. Bassi et al., High-Order Accurate Discon-
tinuous Finite Element Solution of the 2D Euler
Equations. 1997

93. Persson et al., Curved Mesh Generation
and Mesh Refinement using Lagrangian Solid
Mechanics. 2009

94. Fortunato ef al., High-order Unstructured
Curved Mesh Generation using the Winslow
Equations. 2016

95. Roca et al., Defining Quality Measures for
High-Order Planar Triangles and Curved Mesh
Generation. 2011

96. Ruiz-Gironés et al., High-Order Mesh
Curving by Distortion Minimization with
Boundary Nodes Free to Slide on a 3D CAD
Representation. 2015

97. Ruiz-Gironés et al., Defining an L2-
Disparity Measure to Check and Improve the
Geometric Accuracy of Non-Interpolating Curved
High-Order Meshes. 2015

98. Ruiz-Gironés et al., Generation of Curved
High-order Meshes with Optimal Quality and
Geometric Accuracy. 2016

99. Ruiz-Gironés et al., An Augmented
Lagrangian Formulation to Impose Boundary
Conditions for Distortion-Based Mesh Moving
and Curving. 2017

100. Gargallo-Peir6 et al., A Smffm'(’ Mesh
Smoothing and Untangling Method Independent
of the CAD Parameterization. 2014

101. Gargallo-Peir¢ et al., Defining Quality
Measures for Validation and Generation of
High-Order Tetrahedral Meshes. 2014

102. Toulorge et al., Optimizing the Geometrical
Accuracy of Curvilinear Meshes. 2016

https://%5Cpath%7Bhttp://www.gmgworkshop.com%7D
https://%5Cpath%7Bhttp://www.gmgworkshop.com%7D
https://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2015.06.011
https://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2015.06.011
https://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2015.06.011
https://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2015.06.011
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2015.10.127
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2015.10.127
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2015.10.127
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2015.10.127
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.108
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.108
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.108
https://dx.doi.org/10.1007/s00466-013-0920-1
https://dx.doi.org/10.1007/s00466-013-0920-1
https://dx.doi.org/10.1007/s00466-013-0920-1

5.2. FUTURE WORK 111

proaches that work with a more robust identification of invalid ele-
ments'931%4,

More recently, Feuillet has extended the local operator approach
to generate quadratic meshes'®> which has also been proposed in the
recent work of Coupez'®. Their results are restricted to the quadratic
case and it would be interesting to extend the framework to higher-
order curvilinear meshes.

Another interesting area of research would be the investigation of
high-order mesh and solution visualization, building off the recent
work of Loseille and Feuillet™”.

Finally, the mesh adaptation algorithm naturally handles time-
varying three-dimensional geometries and we remark upon some pos-
sible methods for constructing these geometry descriptions in Ap-
pendix A. The biggest challenge in realizing a simulation within a
time-varying domain is the generation of the initial mesh. Here, the
initial mesh was easily obtained from the Kuhn-Freudenthal triangula-
tion, however, more complicated geometries would require a geometry-
conforming triangulation algorithm. Starting from tetrahedralizations
of the domain at various instances in time, either an advancing-front
technique or a constrained Delaunay method could provide the initial
four-dimensional mesh.

Applying the four-dimensional framework to other partial differential
equations

The focus of this work was to demonstrate the first four-dimensional
adaptive numerical simulations for the solution of PDEs. As such, we
focused on simple PDEs, particularly, the advection-diffusion equa-
tion. An interesting area of future work would be to apply the frame-
work to the solution of the unsteady Navier-Stokes equations.

Investigating other discretizations

Here, we used the discontinuous Galerkin method which is very com-
putationally expensive in the four-dimensional setting. It would be
useful to explore alternative discretizations, such as the continuous
Galerkin method, so as to achieve a lower solution error with fewer de-
grees of freedom. Table 5.1 provides the estimated cost per pentatope
of the discontinuous and continuous Galerkin methods which were
obtained using the valency statistics of the four-dimensional meshes
in the previous chapters. However, for the same DOF with the contin-
uous Galerkin discretization, the cost of the mesher increases which
further motivates the development of a parallel meshing capability.

103. Johnen et al., Geometrical Validity of
Curvilinear Finite Elements. 2013

104. Johnen et al., Efficient Computation of
the Minimum of Shape Quality Measures on

Curvilinear Finite Elements. 2016

105. Feuillet et al., P2 Mesh Optimization
Operators. 2018

106. Coupez, On a Basis Framework for High

Order Anisotropic Mesh Adaptation. 2017

107. Loseille et al., Vizir: High-order Mesh and
Solution Visualization using OpenGL 4.0 Graphic
Pipeline. 2018

https://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2012.08.051
https://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2012.08.051
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.067
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.067
https://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2016.11.067
https://dx.doi.org/10.2514/6.2018-4167
https://dx.doi.org/10.2514/6.2018-4167
https://dx.doi.org/10.2514/6.2018-1174
https://dx.doi.org/10.2514/6.2018-1174
https://dx.doi.org/10.2514/6.2018-1174

112 CHAPTER 5. CONCLUSIONS

p=1 p=2 p=3 p=4 p=5
dG 5 15 35 70 126
cG o004 0.71 3.38 1054 25.71

Mesh adaptation for higher-dimensional parameter spaces

The dimension-independent meshing capability described in this work
also opens the possibility of computing optimal meshes for
high-dimensional parameter spaces. In particular, the work of Lan-
genhove'®® demonstrated an adaptive framework for controlling the
error introduced by systems with a parametric stochastic component
which is particularly useful when the output of interest exhibits low
regularity in the parameter space. The aforementioned work was a
demonstration for two- and three-dimensional parameter spaces, but
higher-dimensional ones are certainly possible with our dimension-
independent mesher.

Table 5.1: Estimated cost per pentatope
for the discontinuous (dG) and continu-
ous (cG) Galerkin methods with various
polynomial orders.

108. Langenhove et al., Goal-Oriented Error
Control of Stochastic System Approximations
using Metric-Based Anisotropic Adaptations.
2018

< The extension to 54 is trivial.

]

https://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.07.044
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.07.044
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.07.044

APPENDIX A

(GEOMETRY AND VISUALIZATION
IN FOUR DIMENSIONS

4d? 1 can barely visualize 34!
— David L. Darmofal

A.1 Background

All the four-dimensional problems studied in this work are contained
within the unit tesseract x € [0,1]* € R*. As seen in Chapter 3, this
geometry description is a fundamental input to our algorithm. As
such, it is important to describe how this tesseract geometry is con-
structed, not only because it is the geometry we study, but because
the developed algorithm can be applied to derive more complicated
straight-sided geometries for future four-dimensional (or higher) ap-
plications.

Our geometry framework is based on the Electronic Geometry Aircraft

109. Haimes et al., On The Construction of
/\ir'u‘uﬂ Conceptual (lwuuh'}/bfw High-Fidelity
Edges and Faces form the fundamental topological structures in a ge- Analysis and Design. 2012

Design System (EGADS) framework of Haimes™ ™' in which Nodes,

ometry description. These topological entities are additionally asso- 11o. Haimes et al,, The Engineering Sketch Pad:
A Solid-Modeling, Feature-Based, Web-Enabled

ciated with geometrlc ones Wthh’ for 51mple geometnes, are easy to System for Building Parametric Geometry. 2013

describe. Thus, our task is to construct the topology hierarchy for the _ - -
boundary of the tesseract which will consist of a set of Nodes, Edges, (n;,,,,lj,?i,n;:f,,L]f//li,, [[—[(p(“)_t,l;: A Lightwerght
Faces and Volumes. Ultimately, this hierarchy should consist of the
following unique entities: 16 Nodes, 32 Edges, 24 Faces and 8 Volumes.

Though we are only interested in four-dimensional applications in
this work, most of the algorithms we develop are independent of the

dimension of the mesh. As such, we describe our method should the

https://dx.doi.org/10.2514/6.2018-1401
https://dx.doi.org/10.2514/6.2018-1401

114 APPENDIX A. GEOMETRY AND VISUALIZATION

interested reader find a use in higher dimensions.

Furthermore, this chapter introduces a dimension-independent
method for computing the intersection between a polytope and a half-
space. This has important applications in the calculation of the re-
stricted Voronoi diagram#” and we introduce it here since it also bears
use in the visualization of four-dimensional meshes. In two dimen-
sions, the Sutherland-Hodgman re-entrant clipping algorithm**? is com-
monly used to clip polygons, which is fundamental to the vertex-
processing stage of standard graphics pipelines. In three dimensions,
Lévy discusses a method for clipping polyhedra'3. We have not,
however, come across a dimension-independent algorithm for clipping
polytopes, thus motivating the work in the following sections.

A.2 A simple result from polytope theory

In order to proceed with the construction of the geometry hierarchy,
we need a simple result which is founded on the following defini-
tion''4.

Definition 2 (simple polytope). A n-polytope P is said to be simple if every
vertex is incident to exactly n facets. A property of simple polytopes is that
their dual polytopes are simplices.

For a tesseract, every vertex is incident to four cubes (or Volumes),
thus a tesseract is a simple polytope. The following result forms the
foundation of our methods for (1) constructing the geometry of an
n-dimensional polytope, and (2) clipping n-polytopes for either visu-
alization purposes or to compute Voronoi diagrams.

Lemma 3. The edges E(P) of a simple n-polytope P can be derived purely
from the vertex-facet-incidence matrix of P.

As Henk suggests''4, vertices of general (even convex) 5-polytopes
may be non-adjacent despite sharing many common facets. However,
for simple polytopes, the dual of P is a simplex from which the entire
set of facets is trivially constructed. Furthermore, the hierarchy of the
facets of a polytope can be obtained from the corresponding facet hier-
archy of its dual'4, which contains the edges. This result is obviously
trivial when finding the edges of a n-polytope with n < 4 but, as men-
tioned earlier, we leave the higher dimensional applications for future
work.

The edges £(P) can then be identified from the following relation
on V(P):

E(P) = {e= (vo,v1) | |[F(vo) NF(v1)| =n—1} (A1)

where F(-) : N — Z" returns the n-facets adjacent to a particular

47. Caplan et al., Anisotropic Geometry-
Conforming d-simplicial Meshing via Isometric
Embeddings. 2017

112. Sutherland et al., Reentrant Polygon
Clipping. 1974
113. Lévy, Robustness and Efficiency of
Geometric Programs: The Predicate Construction
Kit. 2016
114. Henk et al., Basic Properties of Convex
Polytopes. 2004

01

f3 f

02

Ug

fe

(%]

fs %

U4

Figure A.1: Vertices and facets (in blue)
of an example polygon P. The vertex-
facet incidence relations are as follows:
F(v1) = (3,4), F(v2) = (1,3), F(v3) =
(1/5)r F(’04) = (2/5)r F(US) = (2/6)1
F(vs) = (4,6).

Recall that a relation on the set V is a
subset of V x V.

https://dx.doi.org/10.1145/360767.360802
https://dx.doi.org/10.1145/360767.360802

A.3. TESSERACT GEOMETRY 115

vertex from the vertex-facet incidence matrix. Observe that facets are
labeled with integers.

A.3 Constructing the tesseract geometry

The tesseract geometry can be constructed by initializing the vertex-
facet incidence matrix, F. Before doing so, it is important to note that
we label bisectors with integers. For a bisector (facet) B, we will refer
to its integer label as b(B) but will often write b for brevity. Each 3-
dimensional facet of the tesseract corresponds to a cube and our first
task is to build the full set of facets B, which are described by

B= {B | b(B) € F[1,2,3,4], nke, = sign(b)3y, Vj = 1,...,4}.
(A.2)
where e, is the Cartesian unit vector parallel to the b-axis.

Initially, the 16 Nodes of the tesseract are {x | x € (+1,£1,+1,+1)}
because this makes the identification of the facets F(v) on each Node v
easier. Specifically, this identification is performed by matching the b-
th coordinate (recall b is the label of a bisector B) of a given Node with
the coordinates of the bisectors in Equation A.2. The Node coordinates
are then shifted so the tesseract is in [0, 1]*. The resulting vertex-facet
incidence matrix is provided in Table A.1.

Node, v Coordinates, x(v) Facets, F(v)

1 (1,1,1,1) 1,2, 3,4
2 (0,1,1,1) -1, 2,3, 4
3 (0,0,1,1) -1,-2, 3, 4
4 (0,0,0,1) -1,-2,-3, 4
5 (0,1,0,1) -1, 2,3, 4
6 (0,1,1,0) -1, 2, 3,4
7 (0,0,1,0) -1,-2, 3,74
8 (0,1,0,0) -1, 2,-3,4
9 (1,0,0,1) 1,-2, 3, 4
10 (1,0,0,1) 1,-2,-3, 4
11 (1,1,0,0) 1, 2,-3,4
12 (1,0,1,0) 1,-2, 3,74
13 (1,0,0,0) 1,-2,-3,74
14 (1,1,1,0) 1, 2, 3,4
15 (1,1,0,1) 1, 2,-3, 4
16 (0,0,0,0) -1,-2,-3,4

The Edges are then identified using Equation A.1 along with the
vertex-facet incidence matrix F. To construct the Faces, we need to
determine the four (globally unique) Edge children of each Face. Sim-
ilarly, each Volume entity must reference six (globally unique) Face

< In words:

4-:5‘

4‘!

A bisector B with label
b(B) has its normal vector
ng in the direction of bey,.

Table A.1: Tesseract Node coordinates
and the set of facets F(v) on each Node
where the integer labels correspond to
Equation A.2.

116 APPENDIX A. GEOMETRY AND VISUALIZATION

children. The procedure for doing so is described in Algorithm A.1.
We first loop through the eight bisectors and construct the VRep of
the bounding cubes (Volumes) — this is the easy part. With the VRep
of each cube, we now obtain the HRep of this cube. The number of
bisectors in the HRep should be seven since there are six bounding
squares plus the common bisector defining the cube. Next we loop
through each of bisector in this HRep (skipping the common one) and
construct the VRep of each square. We can then retrieve a previously
created square with this VRep, or create a new one. In order to create
a square, we need to find the four Edge children which is easily done
by looking up the indices of the Edges created earlier. Upon either cre-
ating these squares or retrieving them, we now have six squares which
can be added as children of the current cube. This procedure is better
described in Algorithm A.1.

buildTesseract
input: tesseract VRep (P), vertex-facet incidence matrix (F)
output: tesseract geometry hierarchy, G

1 C < @1 Volumes (cubes) to fill

2 for beB

3 ¢y < VRep(P,b)

4 h, < HRep(c,) > there should be 7

5 S < @ > Faces (squares) to fill

6 for f € hy > loop through Faces of cube ¢

7 if f = b continue

8 Sf <—VRep(cb,f)

9 ef < HRep(s¢) > there should be 6
10 & < @ > Edges of the Face to fill
11 for e € ey
12 if e = b or e = f continue
13 & < £ UmakeTopology(P(e))

end
14 S + S UmakeTopology(€&)
end
15 C < C UmakeTopology(F)
end
16 G < makeTopology(C)

The procedure in Algorithm A.1 only requires the vertex-facet inci-
dence matrix along with the VRep of the top-level geometry to infer
the remaining topology hierarchy. Therefore, it can be used to derive
more complicated four-dimensional geometries in the future.

<1 An Edge or an edge?

We make the distinction
between a geometry Edge
and a mesh edge. Cap-
ital letters will be used
throughout this work to
represent geometry en-
tities whereas lowercase
ones will represent mesh
entities.

Algorithm A.1: Unique identification of
topology hierarchy for the tesseract. The
function makeTopology is assumed to con-
struct a topological object with a pro-
vided set of lower dimensional children.
Note that these lower dimensional chil-
dren may be retrieved if they already
exist in the geometry hierarchy. This
avoids duplication which would cause
issues when traversing the geometry hi-
erarchy during the mesh adaptation pro-
cedure.

A.3. TESSERACT GEOMETRY 117

The output of Algorithm A.1 can be represented as a collection of
directed graphs for the topologies of each of the eight bounding cubes.
These are provided in Figures A.2 and A.3 should the interested reader
wish to reproduce the geometry without implementing the aforemen-
tioned algorithm.

Figure A.2: Representation of the eight
bounding cubes of the tesseract geome-
try as a directed graph with unique ge-
ometry entities atthe x =0,y =0,z =0
and t = 0 hyperplanes. The notation is
as follows: V (in gray) refers to a bound-
ing cube (Volume), F (in blue) refers to
a square (Face), E refers to a geometry
Edge (in red) and N refers to a Node (in
white).

118 APPENDIX A. GEOMETRY AND VISUALIZATION

@©z=1 dt=1

Figure A.3: Representation of the eight
bounding cubes of the tesseract geome-
try as a directed graph with unique ge-
ometry entitiesatthex =1, y=1,z=1
and t = 1 hyperplanes. The notation is
as follows: V (in gray) refers to a bound-
ing cube (Volume), F (in blue) refers to
a square (Face), E refers to a geometry
Edge (in red) and N refers to a Node (in
white).

A.4. VISUALIZING A FOUR-DIMENSIONAL MESH 119

A.4 Visualizing a slice of a four-dimensional mesh

In order to visualize n-dimensional meshes, we require that our poly-
topal or simplicial meshes can be intersected with a (# — 1)-dimensional
clipping plane such that the intersected polytopes can also be visual-
ized. The following result ensures this and also allows for the cal-
culation of restricted Voronoi diagrams in a dimension-independent
manner+7.

Proposition 2. A simple n-polytope P C IR" intersected with a halfspace
HT produces a simple polytope.

Proof. It suffices to show that every vertex of the new polytope will be
incident to exactly n facets. One way of describing the halfspace H*
is by using a unique point xg and normal to the dividing hyperplane
n. Since P is simple, we can determine its edges £(P). Every vertex
of the original polytope v € V(P) can then be classified as to whether
it is in the halfspace as

VH(P)={veV(P)| (x(v)—xp) -n>0}. (A.3)

The vertices created from the intersection are then computed by in-
tersecting each edge with the dividing hyperplane (note we can filter
which edges are intersected by finding edges with one vertex in V' (P)
and one that is not). Denote these intersection vertices as S, therefore,
the new vertices of the polytope Q are V(Q) = V*(P)US. There are
two cases to consider. First, the vertices V' (P) are clearly adjacent to
n facets since they were not affected by the intersection. Second, the
vertices S were each created from the intersection of an edge with the
hyperplane. Since edges are adjacent to n — 1 facets (Equation A.1)
and the dividing hyperplane, itself, defines a facet of Q, then each
intersection vertex is adjacent to n facets. O

The basic method for identifying the visible slices of a n-dimensional
mesh first consists of identifying which polytopes (or simplices) of this
mesh are cut by the input slice, represented as a (n — 1)-dimensional
hyperplane with point xgp and normal n. Next, each cut polytope P
must be intersected with the plane. This can be achieved by identify-
ing the set of edges defining a relation on the vertices of the polytope
which lie on opposite sides of the hyperplane:

& = {e = (vo,v1) | |((x(v0) —x0) - m) - ((x(v1) = x0) -n) <0} (A.4)

where &; is, again, a relation on V(P). The intersection vertices are
then determined by intersecting each edge ¢ € & with the hyperplane.
These are tagged with the n — 1 common bisectors between the two

47. Caplan et al., Anisotropic Geometry
Conforming d-simplicial Meshing via Isometric
Embeddings. 2017

< Notation alert:

H is used to refer to a
hyperplane and the nota-
tion HT (conversely, H ™)
is used to represent the
halfspaces on either side
of H.

oo &

6‘!

120 APPENDIX A. GEOMETRY AND VISUALIZATION

vertices vy and v; such that the (n — 1)-polytope resulting from the
intersection can be visualized.

In four dimensions, this hyperplane is specified as a normal vector
in either of the four directions (X,Y,Z,T) as well as some offset distance,
thus defining the coordinates of xo. Our framework also has the abil-
ity to handle the six rotations about the XY, XZ, XT, YZ, YT and ZT
planes but we do not find the dynamic manipulation of these rotations
very intuitive from a user perspective. In fact, simply slicing four-
dimensional meshes at constant X, Y, Z or T hyperplanes provides an
intuitive view of the mesh for our purposes.

hyperplane ~

F---—=-=-=-=-=--}F---

1
1
1

R ¢

/

4d mesh 3d polyhedra

This concept is readily extendable to visualize four-dimensional so-
lution fields. Consider the case of a vertex-valued field attached to
the four-dimensional mesh M. When M is intersected with H(n, pg)
on Line 6 of Algorithm A.2, a linear interpolation between the vertex
values at the edge endpoints will yield the value of the field at the
intersection vertex. The vertex field can then be passed as usual with
the clipped polyhedral mesh to the visualization system.

Examples

Let us provide some sample visualizations of four-dimensional meshes.

The first example is a visualization of a pentatopal mesh, correspond-
ing to the mesh of an expanding sphere. The details of the problem
setup are in Chapter 3 but note that the sphere begins with a radius of
Rp = 0.4 and expands at constant velocity to a final radius of Ry = 0.8
after one second. A visualization of the polyhedral mesh obtained by

<1 Did you know?

s A rotation in 4d is actu-
9 ally about a plane the same
¢ way a rotation in 3d is

about an axis. Interest-
ing. ..

Figure A.4: Schematic of how a 4d mesh
is sliced to produce polyhedra.

A.4. VISUALIZING A FOUR-DIMENSIONAL MESH 121

visualizegdMesh

inputt M = (V,T) C R n,pg € R*
output: M = (V,T) C R®
for k€ T
& + &s(x) from Equation A.4
if £ = @ continue > « is not clipped
P + @ > initialize polyhedron
for ec €&
X < eNH(n,po)
u < transform(x, H(n, po))
P+ PU|V
V+VUu

© 0O UVl A~ W N R

10 T« TUP

clipping the full pentatopal mesh at a time of 0.6 seconds is shown in
Figure A.5.

(b) t =0.6

Algorithm A.2 also works for four-dimensional polytopal meshes.
Here we present two views of a four-dimensional restricted Voronoi
diagram which were computed using our algorithm for computing
Voronoi diagrams in a dimension-independent manner47. The Voronoi
diagram of Figure A.6 was computed by randomly placing 100 four-
dimensional sites within a four-dimensional Kuhn-Freudenthal trian-
gulation88 with 4 divisions in each of the x, y, z and ¢ directions. The
resulting scenes at t = 0.3 and t = 0.7 seconds are less than intu-
itive but we provide them in Figure A.6 for reference. In any case, the

Algorithm A.2: Visualization of a 44
mesh by slicing with a hyperplane.
Each element x is checked for an in-
tersection with the hyperplane # (n, po).
The intersection points are computed on
Line 6 and then transformed into three-
dimensional coordinates using an or-
thonormal basis for the hyperplane on
Line 7. These intersection points are la-
beled according to the current size of
the three-dimensional vertices V (Line 8)
and added to the list of vertices on
Line 9. The resulting three-dimensional
polyhedron is added to the topology of
the mesh 7 on Line 10. This three-
dimensional mesh can then be visual-
ized with a typical visualization system.

Figure A.5: Visualization of a pentatopal
mesh.

47. Caplan et al., Anisotropic Geometry-
Conforming d-simplicial Meshing via Isometric
Embeddings. 2017

88. Kuhn, Simplicial Approximation of Fixed
Points. 1968

https://dx.doi.org/10.1073/pnas.61.4.1238
https://dx.doi.org/10.1073/pnas.61.4.1238

122 APPENDIX A. GEOMETRY AND VISUALIZATION

parallel edges of the resulting mesh hint at the divisions in the origi-
nal Kuhn-Freudenthal triangulation. The Voronoi cell associated with
each polyhedron is described by the colours.

@t=03 (b)t=0.7

A.5 Perspectives

The geometry studied here was the unit tesseract. It would be more
interesting to study more complicated shapes in the future that include
moving geometries. Suppose we have a set of m bodies moving in time,
bi(t),i=1,...,m. We can view the spatiotemporal domain geometry
Q(t) as the Boolean subtraction of these movies bodies from some
outer far-field geometry, F(t):

Q(t) = F(t) - ibim.

The advantage of this view of the spatiotemporal geometry is that we
can still use a three-dimensional geometry framework, such as the one
of Haimes™*°, provided the framework exposes a solid Boolean opera-
tion between bodies. Otherwise, a more general, representation of the
spatiotemporal geometry can be obtained with trivariate B-splines'*>.

Figure A.6: Visualization of a 4d Voronoi
diagram. The colours correspond to the
Voronoi cells in which the clipped poly-
hedra reside.

110. Haimes et al., The Engineering Sketch Pad:
A Solid-Modeling, Feature-Based, Web-Enabled
System for Building Parametric Geometry. 2013

115. Cohen et al., Geometric Modeling with
Splines. 2001

https://dx.doi.org/10.1201/9781439864203
https://dx.doi.org/10.1201/9781439864203

APPENDIX B

DIMENSION-INDEPENDENT CALCULATION OF THE

RESTRICTED VORONOI DIAGRAM

B.1 Background

This chapter discusses the dimension-independent implementation we
developed to calculate restricted Voronoi diagrams+7. The original in-
tent was to develop an anisotropic meshing algorithm based on the
concept of isometric embeddings, thus requiring the generation of
a uniform mesh in the embedding space. We chose the centroidal
Voronoi tessellation to compute this uniform mesh, building upon the
work of Lévy3>43. Though the work in this thesis deviated from the
use of isometric embeddings, we provide the details of how we com-
pute restricted Voronoi diagram in a dimension-independent manner.

This chapter also addresses where our friend the giraffe came from.
B.2 Centroidal Voronoi tessellations
Given a set of m points (or sites), Y = {u;|u; € RN},_; ,, the

Voronoi diagram of these sites is the polytopal mesh defined by

Vor(U) = {vor(w;) | i=1,...,m} (B.1)
where the Voronoi cells vor(u;) are N-polytopes:
vor(u;) = {x € RN | [|x —w|| < |[x —uj||, Vj#i}. (B.2)

Now, given a mesh M = (V,T) C RN and a set of m sites U, we
can compute the restricted Voronoi diagram

Vor y((U) = Vor(U) N M, (B.3)

47. Caplan et al., Anisotropic Geometry-

Conforming d-simplicial Meshing via Isometric
} 8 8

Embeddings. 2017

< This is where I came from!

lar

¢

35. Lévy et al., Variational Anisotropic Sur

face Meshing with Voronoi Parallel Linear
Enumeration. 2012

43. Lévy, "Geogram: A Programming Library of

Geometric Algorithms”. 2016

124 APPENDIX B. RESTRICTED VORONOI DIAGRAMS

which is the intersection of the Voronoi diagram with the mesh M.
Although Vor(Y/) is a mesh consisting of N-polytopes (possibly un-
bounded), Vor x4 (U) is a mesh consisting of n-polytopes, assuming the
dimension of the topology of M is dim(7) = n. M may be simplicial
or polytopal.

We can optimize the sites I/ to minimize the centroidal Voronoi tessel-
lation energy

BUuM =Y, [[x-ulfdx (B4)
i=1

= vor v (u;)

where vor ((u;) denotes the Voronoi cell generated by site u; restricted
to the mesh M. Minimizing the CVT energy can be done in a vari-

116

ety of ways. Lévy and Liu'* investigate a quasi-Newton approach,
but a simpler approach is to use Lloyd relaxation'”. This consists of
iteratively placing a site at the centroid of its restricted Voronoi cell.
There are deterministic and probabilistic methods for computing the

centroids of the restricted Voronoi cells!?8-121

. We prefer a determin-
istic approach, thus requiring the exact calculation of the centroids of
every restricted Voronoi cell.

Every restricted Voronoi cell in Equation B.4 is the intersection of

the full Voronoi cell vor(u;) C RN with the mesh M:

vor y(u;) = vor(u;)) "M = vor(u;) Nx. (B.5)
KeEM

Instead of computing the intersection of each Voronoi cell with the
mesh, we can compute the intersection of each mesh element with the
entire Voronoi diagram. Without loss of generality, consider the case
of a simplicial mesh. This restricted Voronoi simplex (RVS) Vory () can
be defined as

Vor, (U) = 6 x Nvor(u;). (B.6)
i=1

B.3 Computing restricted Voronoi simplices

The input to the calculation of a restricted Voronoi simplex is a sim-
plex of the mesh x along with the sites {/. To perform the calculation
exactly, we use the dimension-independent side predicates of Lévy+3.
As such, we need to determine whether an intersection point is the
intersection of a hyperplane with an edge, triangle, tetrahdron, pen-
tatope, etc.

For example, consider the intersection of a triangle x = (%0, %1, %2)
with the Voronoi cell defined by the site u;: vor(u;). This Voronoi cell
can be viewed as the intersection of all the m — 1 halfspaces defined by

< vor or Vor?

]

We use the notation "vor"
to denote Voronoi cells
whereas we use "Vor" to
denote the Voronoi dia-
gram.

116. Liu et al., On Centroidal Voronoi Tessella-
tion: Energy Smoothness and Fast Computation.
2009

117. Lloyd, Least Squares Quantization in
PCM. 1982

118. Du et al., Centroidal Voronoi Tessellations:
Applications and Algorithms. 1999

119. Du et al., Grid Generation and Optimiza-
tion Based on Centroidal Voronoi Tessellations.

2002

120. Du et al., Tetrahedral Mesh Generation
and Optimization Gased on Centroidal Voronoi
Tessellations. 2003

121. Du et al., Anisotropic Centroidal Voronoi
Tessellations and their Applications. 2005

43. Lévy, "Geogram: A Programming Library of
Geometric Algorithms”. 2016

< Hyperplane?

/]

We consider the general
setting, in which the tri-
angle can be embedded in
a dimension greater than
two.

https://dx.doi.org/10.1145/1559755.1559758
https://dx.doi.org/10.1145/1559755.1559758

B.3. COMPUTING RESTRICTED VORONOI SIMPLICES 125

every pair of sites (u;, u;) (i # j):

m

vor(w) = (| H' (w,w)), j#i (B.7)
j=1
Instead of inefficiently performing all intersections in Equation B.7,
the security radius theorem3> gives a bound for which bisectors can be
classified as contributing bisectors. To apply the security radius theo-
rem, we need the vertices of the current polytope being clipped, which
requires a method for intersecting a hyperplane with a polytope.

Let us begin with the closest u; to u; since this pair will define
a contributing bisector, which we will denote as H;. Our goal is to
compute the portion of (o, x1,%;) closest to u; by intersecting it with
‘H1 (Figure B.1(a)). First, we classify %y, 11 and %, with respect to H;.
This can be done exactly with the side_0 predicate, revealing that both
xo and x1 are in the halfspace Hf but «; is in H; . Therefore, we know
that the two edges (x1,%2) and e; = (%, x2) will be intersected with
H1, yielding the intersection points qg and q, respectively.

Now, we need to clip the new polygon P; = conv(xg, %1, qo, q1)
with the next contributing bisector, H, (Figure B.1(b)). To do so, we can
classify whether the vertices of P; are on H or H, and then identify
which edges of P; will be clipped by H,. Using side_0 on the vertices
qo or q1 would result in an inexact calculation since their coordinates
were computed with finite-precision arithmetic via the intersection of
the edges with H;. However, since we know that qq is the intersection
of the edge (x1,x2) with #;, then we can use the side_1 predicate to
classify its side relative to H>. The same can be done for q;, knowing
it resulted from the intersection of the edge (xo,x2) with 7. The
resulting intersection points are q2 and q3.

The next polygon in the sequence is determined by
P, = conv(xp, q2,93,q1) and, again, we need to classify each vertex
with respect to the next bisector H3. The vertex %y can be classified
using side_0; both q; and q and p; can be classified using side_1.
However, q3 is the intersection of the entire triangle x with H; and H;.
To classify q3 with respect to H3, we need to use the side_2 predicate.

By extracting the edges of P, and intersecting each edge with H3
results in the Voronoi polygon P; = conv(xo, q2, q4, 95, q1), which
forms the final clipped Voronoi polytope (Figure B.1(d)).

To generalize this concept, consider a vertex g computed from the
intersection of an edge e = (e, e1) with a bisector H. If ¢y was created
from the intersection of a i-simplex (i < n) 7, of M and e; was created
from the intersection of a j-simplex (j < n) 7, of M, then g is the
intersection of the k-simplex (k > max(i,j), k < n) 7 = T, U Te;. We
therefore store the symbolic information as to which simplex 7 (of the
mesh M) produced the intersection. Note that we also need to retain

. K
u; 1

(c) Clipping with H,

u;
K2 13

(d) Clipping with H3

Figure B.1: Clipping a simplex by a
Voronoi cell create by the site u;.

126 APPENDIX B. RESTRICTED VORONOI DIAGRAMS

the k sites that form contributing bisectors with the site u;.

Algorithm B.1 summarizes this clipping procedure for a single
Voronoi polytope. Once the entire restricted Voronoi simplex has been
computed (using Algorithm B.1 with all Voronoi cells forming a non-
empty intersection with «), then the centroids c(vor(u;)) of the re-
stricted Voronoi cells can be computed:

Le(P)e(P)
) — —, forP=xnN) A D, Vke M
c(vor g (u;)) %U(P) or x Nvorg(u;) # K

(B.8)
where ¢(P) retrieves the centroid of the input polytope and v(P)
computes the volume. With Lloyd relaxation, the sites are iteratively
moved to the centroids computed from Equation. B.8. Upon each iter-
ation, we can compute the energy from Equation B.4.

computeRestricted VoronoiPolytope
input: u;, x
output: P = vor(u;) N«
1 P+«
2 j=1
3 while (security radius not reached)
4 u; = nearestNeighbour(u;, j)
5 H H(ui, u])
6 Q0
7 E—E(P)
8 for e = (eg,e1) € €
9 so = side_I(ep, H) > for the I-simplex T,
10 s1 = side_J(e1, H) > for the J-simplex T,
11 if s) = s1 > no intersection of e with H
12 continue
13 p < e or e; (whichever has side s in H ™)
14 q < eNH and set g < |P|
15 Ty < Tey U Tgy
16 F(q) < F(ep) NF(ep) Ub(H)
17 QO+ QUpUyg
end
18 P+ Q
19 j = j+ 1 proceed to next nearest neighbour
end

To demonstrate the algorithm, consider the optimization of a set of

35. Lévy et al., Variational Anisotropic Sur-
face Meshing with Voronoi Parallel Linear
Enumeration. 2012

Algorithm B.1: Calculation of a re-
stricted Voronoi polytope for a Voronoi
cell defined by the site u; clipped with
a simplex « in the mesh M. Line 15
computes the symbolic information as to
which k-simplex 1, of the mesh M con-
tributes to the calculation of the intersec-
tion point q. Line 16 determines which
facets are attached to the new intersec-
tion vertex q. Note that this is simply the
list of facets attached to the edge as well
as the facet produced by the bisector H
(labeled with b(H) as in Appendix A).
The new polytope Q is formed by ap-
pending whichever vertex p of the edge
e is on the side %" along with the new
intersection vertex g.

B.3. COMPUTING RESTRICTED VORONOI SIMPLICES 127

sites in a n-cube [0,1]" where the background mesh M is the Kuhn-
Freudenthal triangulation®® with a single division in each coordinate
direction (i.e., there are 2 triangles in 2d, 6 tetrahedra in 3d and 24 pen-
tatopes in 4d). For these cases, 40 Voronoi sites were initially seeded
randomly within [0,0.1]". Furthermore, consider the mesh of a giraffe
with 102,867 vertices and 124,153 triangles embedded in R3. For this
case, 0.4% of the mesh vertices were randomly selected as the sites (this
makes the Voronoi cells larger so that they more realistically represent
the patches of a giraffe).

The convergence of the CVT energy over 500 iterations of Lloyd
relaxation is shown in Figure B.2. The optimized RVD of the final
giraffe looks much closer to the patterns on a realistic giraffe than in
its initial RVD.

energy ratio

100 «—

——dim=2
aL ——dim=3
10 ——dim=4
giraffe

10‘2 1 1 1 1]
0 100 200 300 400 500

iteration

88. Kuhn, Simplicial Approximation of Fixed
Points. 1968

Figure B.2: Convergence of the CVT
energy of Equation B.4 (normalized by
the initial energy) versus iteration of
Lloyd relaxation for the optimization of
40 Voronoi sites in [0,1)" (n = 2,3,4) as
well as for approximately 200 sites on
the mesh of a giraffe.

https://dx.doi.org/10.1073/pnas.61.4.1238
https://dx.doi.org/10.1073/pnas.61.4.1238

128 APPENDIX B. RESTRICTED VORONOI DIAGRAMS

B.4 Perspectives

The calculation of the restricted Voronoi diagram is embarassingly par-
allel and currently implemented using c++11, OPENMP, PTHREAD
and EMP (provided with EGADS''") threads. Future work involves port-
ing this algorithm to graphics processing units (GPUs). Furthermore,
the optimization of the sites would benefit from a quasi-Newton ap-
proach*®. Finally, methods for conforming to an input description of
the geometry should continue to be investigated+”.

111. Haimes ef al., EGADSlite: A Lightweight
Geometry Kernel for HPC. 2018

116. Liu et al., On Centroidal Voronoi Tessella-
tion: Energy Smoothness and Fast Computation.
2009

47. Caplan et al., Anisotropic Geometry-
Conforming d-simplicial Meshing via Isometric
Embeddings. 2017

https://dx.doi.org/10.2514/6.2018-1401
https://dx.doi.org/10.2514/6.2018-1401
https://dx.doi.org/10.1145/1559755.1559758
https://dx.doi.org/10.1145/1559755.1559758

SOFTWARE IMPLEMENTATION NOTES

Did you write a unit test for
that?
— Marshall C. Galbraith

This chapter remarks upon some important points in both the avro
and SANS implementations that went into this thesis.

C.1 avro

Geometric predicates

The use of exact geometric predicates in a mesh generation tool is es-
sential to perform robust intersection or volume calculations™>.
Shewchuk provides robust geometric predicates for the exact calcula-
tion of triangle and tetrahedron volumes through the orient2d and
orient3d predicates. In Chapter 3, we needed to determine whether
a vertex was visible to the boundary of a cavity which is equivalent
to checking whether the volume formed by every proposed insertion
element is positive. Thus, in four dimensions, we need to robustly de-
termine when the volume of a pentatope is positive. To alleviate the
expertise needed in developing geometric predicates, we use the Pred-
icate Construction Kit (PCK) of Lévy*3 which abstracts every floating-
point value to an expansion_nt structure which tracks the round-off
error incurred by floating-point operations. Algorithm C.1 lists the
orient4d predicate we develop in the language of PCK.

It should be noted that employing the exact volume calculation in
Algorithm C.1 incurs a significant computational cost in comparison
to the inexact calculation (by simply calculating the determinant with
floating-point arithmetic). As a result, a filter is used to determine

APPENDIX C

122. Shewchuk, Adaptive Precision Floating-
Point Arithmetic and Fast Robust Geometric
Predicates. 1996

43. Lévy, "Geogram: A Programming Library of
Geometric Algorithms”. 2016

<1 Thank you Bruno Lévy!

gaeer As we can see, the im-

6-’ plementation of this pred-
icate is very simple in the
language of PCK!

130 APPENDIX C. SOFTWARE IMPLEMENTATION NOTES

when the exact calculation should be used, and when the inexact
one suffices. This filter is generated using FPG™3 using the script in
pck_filters.sh in the avro/test/develop/orient4d directory (click
here to view the script).

double
orient4d(const doublex pO® , const doublex
const doublex p3 , const doublex

pl , const doublex p2 ,
p4)
{
// use the filter to determine if we can
// the fast volume calculation
int s = orient4d_filter(p0,pl,p2,p3,p4);
if (s!=FPG_UNCERTAIN_VALUE)
return orient4dfast(p0,pl,p2,p3,p4d);

use

// compute the vectors pl-p0, p2-p0, p3-p0O, p4-p0d

const expansion& all = expansion_diff(pl[0] , pO[0O]);
const expansion& al2 = expansion_diff(p2[0] , pO[O]);
const expansion& al3 = expansion_diff(p3[0] , pO[O]);
const expansion& al4 = expansion_diff(p4[0] , pO[O]);
const expansion& a2l = expansion_diff(pl[1] , pO[1l]);
const expansion& a22 = expansion_diff(p2[1] , p0O[1]);
const expansion& a23 = expansion_diff(p3[1] , pO[1l]);
const expansion& a24 = expansion_diff(p4[1] , pO[1l]);
const expansion& a3l = expansion_diff(pl[2] , p0O[2]);
const expansion& a32 = expansion_diff(p2[2] , pO[2]);
const expansion& a33 = expansion_diff(p3[2] , pO[2]);
const expansion& a34 = expansion_diff(p4[2] , pO[2]);
const expansion& a4l = expansion_diff(pl[3] , pO[3]);
const expansion& a42 = expansion_diff(p2[3] , pO[3]);
const expansion& a43 = expansion_diff(p3[3] , pO[3]);
const expansion& a44 = expansion_diff(p4[3] , pO[3]);

// compute the determinant with exact arithmetic

const expansion& Delta = expansion_det4x4(all , al2 , al3 al4d ,
a2l , a22 , a23 a24 ,
a3l , a32 , a33 a34 ,
a4l , a42 , a43 ad4);

if (Delta.sign()==ZERO0)

return 0.0;

return Delta.value();

Inverse topology

As mentioned in Chapter 3, a frequent operation in the mesh adapta-
tion tool is the calculation of the simplices sharing a particular facet f,
C(f) (Equation 3.2).

A costly algorithm would be to loop through all simplices and check
if f C « for each simplex x of the mesh. Instead, let us define the
inverse topology, in which every vertex is aware of a single simplex it is
attached to. Our goal is to compute the ball b(p) of a vertex p given

123. Edelsbrunner et al., Simulation of
Simplicity: A Technique to Cope with Degenerate
Cases in Geometric Algorithms. 1990

Algorithm C.1: Exact calculation of the
volume of a pentatope in the language
of the Predicate Construction Kit#3. The
inputs are the five vertex coordinates of
a pentatope and the output is the signed
volume of the pentatope. The algorithm
returns zero when the exact volume is
zero.

Figure C.1: Finding the ball of p by start-
ing with x9 and marching through its

neighbours. The blue arrows indicate
marches through neighbours that con-
tain p whereas the red arrows indicate
when the recursion terminates because
the neighbour does not contain p. The
red triangles ultimately form the ball

b(p) of p.

https://gitlab.com/philipclaude/avro/blob/master/test/develop/predicates/orient4d/pck_filters.sh
https://gitlab.com/philipclaude/avro/blob/master/test/develop/predicates/orient4d/pck_filters.sh

C.2. SANS 131

a simplex xg attached to p. Since we retain the neighbour relations of
each simplex, we can march through the neighbours of xj, adding to
b(p) if the neighbour «; contains the vertex p. If so, we recursively
march into the neighbours of «;, unless it has already been visited. See
Figure C.1 for a description of this procedure.

If the facet f is simply a vertex, then we are done. Otherwise, the
simplices sharing f are formed from the intersection of the ball of each
vertex:

e(f) = N blo).
vef

Association between source files and algorithms

Table C.1 lists the association between some of the algorithms or equa-
tions described in this thesis with the source code in avro.

Function Class/Function Name in avro File Notes
adaptMesh (Algorithm 3.6) adapt via SerialAdaptation api/adapt.cpp main adaptation algorithm
Base cavity operator Cavity mesh/local/cavity. [h,cpp] Equations 3.2 and 3.3
Specialized operators Insert/Collapse/EdgeSwap/Smooth mesh/local/primitive.[h,cpp] also does geometry hierarchy checks
splitEdges (Algorithm 3.5) splits mesh/local/unitise.hpp method of SerialAdaptation
collapseEdges (Algorithm 3.4) collapses mesh/local/unitise.hpp method of SerialAdaptation
swapEdges (Algorithm 3.2) swaptimise mesh/local/adaptation.cpp method of SerialAdaptation
smoothVertices (Algorithm 3.1) smooth mesh/local/optimise.hpp method of SerialAdaptation
Table C.1: Association between algo-
rithms in this thesis with the corre-
C.2 SANS sponding implementations in avro.

For a topology with dimension 1, let us define a cell as an element of
the mesh (or XField in SANS) which also has a topological dimension
of n. Also define a trace as an element of the mesh with topological di-
mension n — 1. Traces are further classified into being either interior or
boundary traces, and are stored in corresponding InteriorTraceGroups
or BoundaryTraceGroups. Interior trace groups have unique left and
right CellGroups and boundary trace groups are divided according
to which boundary they are associated with (for the specification of
boundary conditions).

Transforming trace coordinates to cell coordinates

SANS requires the calculation of cell coordinates from the trace coordi-
nates for any orientation of an incoming trace. That is, given reference
trace coordinates s € R"~! for an arbitrarily oriented trace f, we need
to determine the reference cell coordinates u € R".

Let the reference coordinates of the orthogonal trace simplex be
stored columnwise in a matrix M, ie. the i-th column of M is p;
as defined in Chapter 2). All the orientations of the reference trace

132 APPENDIX C. SOFTWARE IMPLEMENTATION NOTES

simplex are encoded in the permutations of fy = [0,1,...,n]. Thus f is
a permutation of fy and we can write f = Pfj in terms of the permuta-
tion matrix P. Then u = MPa& where « are the barycentric coordinates:

& = [1 - Z?:l Si,S1,-- .,Snfl]t.

Local split implementation

The local split implementation hinges on the XField_Lagrange ca-
pability which provides the ability to construct XFields by reading
files, through mesher interfaces, or for unit tests. In particular, an
XField_Lagrange can construct the interior and boundary trace asso-
ciations by simply describing the vertices (in SANS, the DOF of the
XField), as well as the cell group and boundary group topologies.
When performing a local split, we can extract a local patch

(XField_LocalPatch) from a global XField by simply inheriting from
a XField_Lagrange and store the DOF and cells we wish to extract.
The XField_Lagrange class was modified to return the leftover traces
after filling in the interior trace groups. These leftover traces form the
boundary of a local patch and we need to classify whether these traces
are in a ghost boundary trace group of the local patch or are on actual
boundary groups of the global XField. Before proceeding, let us define
some conventions.

Conventions for local XFields

1. There are always two cell groups. Cell group o (RESOLVE) consists
of elements in which the solution will be recomputed. Cell group 1
(FIXED) consists of elements in which the solution DOF will be fixed
during the local solve procedure.

2. The are at most three interior trace groups. Interior trace groups are
unique in terms of which cell groups they border. Thus there may

an interior trace group bordering the o-o cell group (RESOLVE-RESOLVE),

o-1 cell groups (RESOLVE-FIXED), or 1-1 cell groups (FIXED-FIXED).

3. There are any number of boundary trace groups and the number of
these is determined by which Galerkin method is used (discontinu-
ous or continuous).

4. There is always a single ghost boundary trace group.
Extracting a local patch The extraction of a local patch is composed of
the following stages:

1. Identify which cells of the global XField should be added to the
RESOLVE cell group and which should be added to the FIXED cell

group,

<1 Generating script:

In SANS, please see the
corresponding MATLAB
script BasisFunction/
Documentation/
TraceToCellRefCoord.m
which generates these
expressions (symbolically
for s) and also reports
the orientation of each
permutation.

C.2. SANS 133

2. Use XField_Lagrange to connect the cell groups, thus filling in the
interior trace groups while listing traces (the boundary leftovers)
which are only bordered by one cell,

3. Classify the leftover traces (call these F) into either ghost or bound-
ary trace groups,

4. Finalize the local XField by assigning cell groups and trace groups,

5. Determine the mappings of the cells and traces (both interior and
boundary) to elements in the global XField.

The last step is necessary when projecting the solution from the global
XField to the local one but also when computing the curvilinear co-
ordinates (if necessary) of the XField_LocalPatch. In order to retrieve
the mappings in this step, the global information (group and element)
of each local element is stored in Step 1.

When classifying the leftover traces F in Step 3, we need to deter-
mine whether it is placed in a boundary trace group or in the ghost
boundary trace group. First and foremost, if a trace f € F maps to
a boundary trace group of the global XField, then f is added to a
boundary trace group of the local patch, regardless of the discretiza-
tion. For discontinuous Galerkin discretizations, f € F is added to a
boundary group if the left element of the trace is in the RESOLVE cell
group of the local patch. For continuous Galerkin discretizations, all
leftover traces are added to boundary groups. For more information,
see the function XField_LocalPatch::isBoundaryTrace.

Splitting a local patch ~ After a local patch has been extracted, it can be
split by specifying which canonical edge of a cell should be split. Since
local patches are extracted from a single cell (call this the main cell),
this canonical edge corresponds to that of the main cell. The local split
procedure consists of the following stages:

1. Create the new vertex (DOF) at the midpoint of the edge ¢,

2. Use the (unsplit) local patch as well as the edge information to build
a set of traces S which contains both unsplit and split traces,

3. Compute the cells that should be split, i.e. compute C < C(e) for
the edge ¢ as in Equation 3.2,

4. Add cells into the XField_Lagrange:

e Any x ¢ C is added to the appropriate RESOLVE or FIXED cell
group,

* Every element x € C is split into two new elements by finding
the index of each edge endpoint in x and setting it to the index
of the newly created vertex,

< Cell-to-trace connectivity:

bk

4

The cell-to-trace connec-
tivity structure in the
global XField can be used
to determine which global
trace is associated with
each local trace

< Extending this framework:

Future work may involve
extracting local patches
about wvertices instead of
cells, in which there is no
main cell. In this situation,
either (1) both the cell and
canonical edge to be split
will need to be specified,
or (2) the global indices of
the edge vertices need to
be looked up to find the
corresponding edge in the
local patch.

134 APPENDIX C. SOFTWARE IMPLEMENTATION NOTES

5. Use XField_Lagrange to connect the cell groups, thus filling in the
interior trace groups,

6. Classify the leftover traces (again, call these F) into either ghost or
boundary trace groups,

< TraceSoup:

The set of traces S is
referred to as a trace soup
in SANS. It is simply a
container for traces of the

) original (unsplit) local
7. Determine the mappings of the cells and traces (both interior and i patch that are either split
. . & or unsplit during the local
boundary) to the global elements in the global XField and construct . i
split process. Therefore, it
the ElementSplitInfo structure for each cell and trace. does not account for the
new (interior) traces that
The set of traces S is needed in order to classify the leftover boundary are created during a split.
traces F in Step 6. It is also needed such that we can lookup the global The ~ TraceSoup: :Lookup
] : i) method determines the
trace information for Step 7. Furthermore, Step 7 requires S in order ElementSplitFlag.
to determine which of the traces of the split patch are New, Split or
Unsplit for the ElementSplitInfo structure of each trace.
Once all the cell and trace maps are complete, the local patch pro-
vides the option to project the DOF of the global XField to the split
XField_LocalPatch if the global XField is curved.
Implementation Edge Iso dG <G Curved Mixed new SLOC
XField_Local v v v X v v(?) 3,660
XField_ElementLocal v X v Vv v(?) X 1,434
XField_LocalPatch v X 4 v 4 X 612

Timing results Previous implementations exist in the XField_Local
and XField_ElementLocal classes which provide similar functionali-
ties in a dimension-dependent manner. With the exception of isotropic
splits (in which every edge of the main cell is split) and mixed-element
meshes, the current implementation in XField_LocalPatch matches all
desired capabilities of the local split procedure. In particular, edge
splits for both discontinuous and continuous Galerkin discretizations
on both straight-sided and curvilinear meshes are supported. Ta-
ble C.2 compares these capabilities. Furthermore, Tables C.3 and C.4
tabulate some timing results of each implementation All timing results

were obtained on an Intel i7-5930K CPU at 3.50GHz.

Implementation 2d sec/split 3d sec/split 4d sec/split
XField_Local 4.6e-5 7.5e-5 n/a
XField_ElementLocal 2.8e-5 1.3e-4 n/a
XField_LocalPatch 3.5€-5 6.4e-5 1.1e-4
Implementation 2d sec/split 3d sec/split 4d sec/split
XField_ElementLocal 7.8e-5 3.7€-4 n/a
XField_LocalPatch 9.0e-5 4.8e-4 4.9e-3

Table C.2: Local split implementation
capabilities. The term Edge refers to
whether edge splits are supported and
Iso refers to whether isotropic splits are
supported. The term Mixed refers to
whether mixed-element meshes are sup-
ported. The last column tabulates the
number of new source lines of code
(SLOC) that were needed for the imple-
mentation. The markings v (?) indicate
that the method has been implemented
but yet to be demonstrated in practice.

Table C.3: Timing results for
splits with the discontinuous
Galerkin discretization with previous
(XField_Local, XField_ElementLocal)
and current (XField_LocalPatch)
implementations.

Table C.g: Timing results for
splits used with the continuous
Galerkin discretization with previous
(XField_ElementLocal) and current
(XField_LocalPatch) implementations.

BIBLIOGRAPHY

[1] M. Yano, J. M. Modisette, and D. L. Darmofal, “The Importance of Mesh Adaptation for Higher-
Order Discretizations of Aerodynamic Flows,” in 20th AIAA Computational Fluid Dynamics Confer-
ence, 20113852, June 2011 (cit. on p. 17).

[2] J. Slotnick, A. Khodadoust,]J. Alonso, D. L. Darmofal, W. Gropp, E. Lurie, and D. J. Mavriplis, “CFD
Vision 2030 Study: A Path to Revolutionary Computational Aerosciences,” NASA /CR-2014-218178,
2014 (cit. on p. 17).

[3] M. Yano, “An Optimization Framework for Adaptive Higher-Order Discretizations of Partial Differ-
ential Equations on Anisotropic Simplex Meshes,” PhD thesis, Massachusetts Institute of Technol-
ogy, Department of Aeronautics and Astronautics, June 2012 (cit. on pp. 18, 38, 59, 78, 79, 91).

[4] S.]Jayasinghe, “An Adaptive Space-Time Discontinuous Galerkin Method for Reservoir Flows,” PhD
thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, June
2018 (cit. on pp. 18, 20).

[5] S. Jayasinghe, D. L. Darmofal, N. K. Burgess, M. C. Galbraith, and S. R. Allmaras, “A Space-Time
Adaptive Method for Reservoir Flows: Formulation and One-Dimensional Application,” Computa-
tional Geosciences, Vol. 22, No. 1, pp. 107-123, February 2018 (cit. on pp. 18, 20).

[6] J. T. Oden, “A General Theory of Finite Elements II. Applications,” International Journal for Numerical
Methods in Engineering, Vol. 1, No. 3, pp. 247-259, 1969 (cit. on p. 19).

[7] J. Argyris and D. Scharpf, “Finite Elements in Time and Space,” Nuclear Engineering and Design, Vol.
10, No. 4, pp. 456—464, 1969 (cit. on p. 19).

[8] L. Fried, “Finite-Element Analysis of Time-Dependent Phenomena,” AIAA Journal, Vol. 7, No. 6,
pp. 1170-1173, 1969 (cit. on p. 19).

[o] M. Behr, “Simplex Space-Time Meshes in Finite Element Simulations,” International Journal for Nu-
merical Methods in Fluids, Vol. 57, No. 9, pp. 1421-1434, July 2008 (cit. on p. 19).

[10] A.Ungor and A. Sheffer, “Tent-Pitcher: A Meshing Algorithm for Space-Time Discontinuous Galerkin

Methods,” in Proceedings of the gth International Meshing Roundtable, 2000, pp. 111-122 (cit. on p. 19).

[11] A. D. Mont, “Adaptive Unstructured Spacetime Meshing for Four-Dimensional Spacetime Dis-
continuous Galerkin Finite Element Methods,” Master’s thesis, University of Illinois at Urbana-
Champaign, Department of Computer Science, December 2011 (cit. on p. 19).

[12] S. Thite, “Adaptive Spacetime Meshing for Discontinuous Galerkin Methods,” Computational Geom-
etry, Vol. 42, No. 1, pp. 20—44, 2007 (cit. on p. 19).

136 BIBLIOGRAPHY

[13] K. J. Fidkowski and Y. Luo, “Output-Based Space-Time Mesh Adaptation for the Compressible
Navier-Stokes Equations,” Journal of Computational Physics, Vol. 230, No. 14, pp. 5753-5773, 2011 (cit.
on p. 20).

[14] K.]J. Fidkowski, “Output-Based Space-Time Mesh Optimization for Unsteady Flows Using Continuous-

in-Time Adjoints,” Journal of Computational Physics, Vol. 341, No. 15, pp. 258-277, July 2017 (cit. on
p- 20).
[15] W. Bangerth and R. Rannacher, “Finite Element Approximation of the Acoustic Wave Equation: Er-

ror Control and Mesh Adaptation,” East-West Journal of Numerical Mathematics, Vol. 7, No. 4, pp. 263—
282, 1999 (cit. on p. 20).

[16] W. Bangerth, M. Geiger, and R. Rannacher, “Adaptive Galerkin Finite Element Methods for the
Wave Equation,” Computational Methods in Applied Mathematics, Vol. 10, No. 1, pp. 3—48, 2010 (cit. on
p. 20).

[17] R. Hartmann, “Adaptive FE Methods for Conservation Equations,” in Hyperbolic Problems: Theory,
Numerics, Applications: Eighth International Conference in Magdeburg, H. Freistithler and G. Warnecke,
Eds., Vol. 141, ser. International Series of Numerical Mathematics, Birkhduser, Basel, February 2001,
PP- 495-503 (cit. on p. 20).

[18] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz, “Adaptive Remeshing for Compressible
Flow Computations,” Journal of Computational Physics, Vol. 72, pp. 449—466, 1987 (cit. on p. 21).

[19] R. Lohner and P. Parikh, “Generation of Three-Dimensional Unstructured Grids by the Advancing-
Front Method,” International Journal for Numerical Methods in Fluids, Vol. 8, pp. 1135-1149, January
1988 (cit. on p. 21).

[20] J. Peraire, J. Peiro, L. Formaggia, K. Morgan, and O. C. Zienkiewicz, “Finite Element Euler Com-
putations in Three Dimensions,” International Journal for Numerical Methods in Engineering, Vol. 26,
pp- 2135—2159, October 1988 (cit. on p. 21).

[21] D. Marcum and N. Weatherill, “Unstructured Grid Generation Using Iterative Point Insertion and
Local Reconnection,” AIAA Journal, Vol. 33, pp. 1619-1625, 1995 (cit. on p. 21).

[22] R. Lohner, “Adaptive Remeshing for Transient Problems,” Computer Methods in Applied Mechanics
and Engineering, Vol. 75, No. 1, pp. 195214, 1989 (cit. on p. 21).
[23] J. Peraire, J. Peir6, and K. Morgan, “Adaptive Remeshing for Three-Dimensional Compressible Flow

Computations,” Journal of Computational Physics, Vol. 103, No. 2, pp. 269—285, 1992 (cit. on p. 21).

[24] S. Pirzadeh, “Three-Dimensional Unstructured Viscous Grids by the Advancing-Layers Method,”
AIAA Journal, Vol. 34, No. 1, pp. 43-49, 1996 (cit. on p. 21).

[25] F. Alauzet and D. Marcum, “A Closed Advancing-Layer Method with Connectivity Optimization-
based Mesh Movement for Viscous Mesh Generation,” Engineering with Computers, Vol. 31, No. 3,
Pp- 545-560, July 2015 (cit. on p. 21).

[26] D. F. Watson, “Computing the n-Dimensional Delaunay Tessellation with Application to Voronoi

Polytopes,” The Computer Journal, Vol. 24, No. 2, p. 167, 1981 (cit. on p. 22).

[27] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, Qhull: Quickhull Algorithm for Computing the
Convex Hull, Astrophysics Source Code Library, April 2013 (cit. on p. 22).

BIBLIOGRAPHY 137

[28] H. Borouchaki, P. George, F. Hecht, P. Laug, and E. Saltel, “Mailleur Bidimensionnel de Delaunay
Gouverné par une Carte de Métriques. Partie I: Algorithmes,” INRIA-Rocquencourt, France. Tech
Report No. 2741, 1995 (cit. on p. 22).

[29] F. Hecht, BAMG: Bidimensional Anisotropic Mesh Generator, http://www- rocql.inria.fr/gamma/
cdrom/www/bamg/eng.htm, INRIA-Rocquencourt, France, 1998 (cit. on pp. 22, 24, 109).

[30] E.J. Bossen and P. S. Heckbert, “A Pliant Method for Anisotropic Mesh Generation,” in Proceedings
of the 5th International Meshing Roundtable, October 1996, pp. 63—74 (cit. on pp. 22, 50).

[31] C. Dobrzynski and P. Frey, “Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations,” in
Proceedings of the 17th International Meshing Roundtable, October 2008, pp. 177-194 (cit. on p. 22).

[32] M. Rouxel-Labbé, M. Wintraecken, and J.-D. Boissonnat, “Discretized Riemannian Delaunay Trian-
gulations,” Procedia Engineering, Vol. 163, pp. 97-109, 2016, 25th International Meshing Roundtable
(cit. on pp. 22, 25).

[33] J.-D. Boissonnat, R. Dyer, A. Ghosh, and N. Martynchuk, “An Obstruction to Delaunay Triangu-
lations in Riemannian Manifolds,” Discrete & Computational Geometry, Vol. 59, No. 1, pp. 226-237,
January 2018 (cit. on pp. 22, 24).

[34] G.D. Cafias and S. J. Gortler, “Surface Remeshing in Arbitrary Codimensions,” The Visual Computer,
Vol. 22, No. 9, pp. 885-895, September 2006 (cit. on p. 22).

[35] B. Lévy and N. Bonneel, “Variational Anisotropic Surface Meshing with Voronoi Parallel Linear
Enumeration,” in Proceedings of the 21st International Meshing Roundtable, 2012 (cit. on pp. 22, 123,
125).

[36] J. F. Nash, “C! Isometric Imbeddings,” Annals of Mathematics, Vol. 60, No. 3, pp. 383-396, November
1954 (cit. on p. 23).

[37] ——, “The Imbedding Problem for Riemannian Manifolds,” Annals of Mathematics, Vol. 63, No. 1,
pp. 20-63, January 1956 (cit. on p. 23).

[38] V. Nivoliers, B. Lévy, and C. Geuzaine, “Anisotropic and Feature Sensitive Triangular Remeshing
Using Normal Lifting,” Journal of Computational and Applied Mathematics, Vol. 289, pp. 225-240, De-
cember 2015 (cit. on p. 23).

[39] F. Dassi, S. Perotto, H. Si, and T. Streckenbach, “A Priori Anisotropic Mesh Adaptation Driven by a
Higher Dimensional Embedding,” Computer-Aided Design, Vol. 85, pp. 111—-122, 2017 (cit. on p. 23).

[40] F. Dassi, A. Mola, and H. Si, “Curvature-Adapted Remeshing of CAD Surfaces,” Procedia Engineer-
ing, Vol. 82, pp. 253—265, 2014, 23rd International Meshing Roundtable (cit. on p. 23).

[41] F Dassi, H. Si, S. Perotto, and T. Streckenbach, “Anisotropic Finite Element Mesh Adaptation via
Higher Dimensional Embedding,” Procedia Engineering, Vol. 124, pp. 265-277, 2015, 24th Interna-
tional Meshing Roundtable (cit. on p. 23).

[42] F. Dassi, P. Farrell, and H. Si, “An Anisoptropic Surface Remeshing Strategy Combining Higher
Dimensional Embedding with Radial Basis Functions,” Procedia Engineering, Vol. 163, pp. 72-83,
2016, 25th International Meshing Roundtable (cit. on p. 23).

[43] B. Lévy, "Geogram: A Programming Library of Geometric Algorithms", http://alice.loria.fr/
software/geogram/doc/html/index.html, Villers les Nancy, France: INRIA Project ALICE, 2016
(cit. on pp. 24, 123, 124, 129, 130).

138 BIBLIOGRAPHY

[44]]J. R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator,”
in Applied Computational Geometry: Towards Geometric Engineering, Springer-Verlag, 1996, pp. 203—222
(cit. on p. 24).

[45] H. Si, “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator,” ACM Transactions on Math-
ematical Software, Vol. 41, No. 2, 11:1-11:36, February 2015 (cit. on p. 24).

[46] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric Framework for Nonlinear
Dimensionality Reduction,” Science, Vol. 290, No. 5500, pp. 2319-2323, 2000 (cit. on p. 24).

[47] P. C. Caplan, R. Haimes, D. L. Darmofal, and M. C. Galbraith, “Anisotropic Geometry-Conforming
d-simplicial Meshing via Isometric Embeddings,” Procedia Engineering, Vol. 203, pp. 141-153, 2017,
26th International Meshing Roundtable (cit. on pp. 24, 27, 31, 114, 119, 121, 123, 128).

[48] P. C. Caplan, R. Haimes, and X. Roca, “Isometric Embedding of Curvilinear Meshes Defined on
Riemannian Metric Spaces,” in Proceedings of the 27th International Meshing Roundtable, 2018 (cit. on
pp- 24, 27).

[49] Z. Zhong, W. Wang, B. Lévy, J. Hua, and X. Guo, “Computing a High-dimensional Euclidean Em-
bedding from an Arbitrary Smooth Riemannian Metric,” ACM Transactions on Graphics, Vol. 37, No.
4, 62:1-62:16, July 2018 (cit. on p. 24).

[50] T. Michal and J. Krakos, “Anisotropic Mesh Adaptation through Edge Primitive Operations,” in 50th

AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012-159,
January 2012 (cit. on pp. 25, 43, 59, 62, 109).

[51] M. A. Park and D. L. Darmofal, “Parallel Anisotropic Tetrahedral Adaptation,” in 46th AIAA
Aerospace Sciences Meeting and Exhibit, 2008-917, 2008 (cit. on pp. 25, 43).

[52] M. A. Park, “Anisotropic Output-Based Adaptation with Tetrahedral Cut Cells for Compressible
Flows,” PhD thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astro-
nautics, 2008 (cit. on p. 25).

[53] F. Alauzet and A. Loseille, “A Decade of Progress on Anisotropic Mesh Adaptation for Computa-
tional Fluid Dynamics,” Computer-Aided Design, Vol. 72, pp. 13-39, March 2016 (cit. on p. 25).

[54] A. Loseille, “Unstructured Mesh Generation and Adaptation,” in Handbook of Numerical Methods for
Hyperbolic Problems, ser. Handbook of Numerical Analysis, R. Abgrall and C.-W. Shu, Eds., Vol. 18,
Elsevier, 2017, ch. 10, pp. 263—302 (cit. on p. 25).

[55] T. Coupez, “Génération de Maillage et Adaptation de Maillage par Optimisation Locale,” Revue
Européenne des Eléments Finis, Vol. 9, No. 4, PP 403—423, 2000 (cit. on pp. 25, 31, 43, 44, 46).

[56] A. Loseille, E. Alauzet, and V. Menier, “Unique Cavity-Based Operator and Hierarchical Domain
Partitioning for Fast Parallel Generation of Anisotropic Meshes,” Computer-Aided Design, Vol. 85,

pp- 53-67, 2017 (cit. on pp. 26, 43, 44, 52, 62, 65, 76, 109).

[57] C. Gruau, “Metric Generation for Anisotropic Mesh Adaptation with Numerical Applications to
Material Forming Simulation,” PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 2005
(cit. on pp. 26, 43, 46, 47).

[58] P. Tremblay, “2-D, 3-D and 4-D Anisotropic Mesh Adaptation for the Time-Continuous Space-Time
Finite Element Method with Applications to the Incompressible Navier-Stokes Equations,” PhD
thesis, University of Ottawa, 2007 (cit. on p. 26).

BIBLIOGRAPHY 139

[59] B. Griinbaum, "Convex Polytopes”, ser. Graduate Texts in Mathematics. Springer, 2003, Vol. 221 (cit.
on p. 30).
[60] M. P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., 1976 (cit. on p. 32).

[61] F. Alauzet, “Size Gradation Control of Anisotropic Meshes,” Finite Elements in Analysis and Design,
Vol. 46, No. 1-2, pp. 181-202, January 2010 (cit. on p. 33).

[62] D. Ibanez, N. Barral, J. Krakos, A. Loseille, T. Michal, and M. Park, “First Benchmark of the Un-
structured Grid Adaptation Working Group,” Procedia Engineering, Vol. 203, pp. 154-166, 2017, 26th
International Meshing Roundtable (cit. on pp. 33, 59, 60, 61).

[63] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-Euclidean Metrics for Fast and Simple Calcu-
lus on Diffusion Tensors,” Magnetic Resonance in Medicine, Vol. 56, pp. 411—421, 2006 (cit. on p. 33).

[64] A. Loseille and F. Alauzet, “Continuous Mesh Framework Part I: Well-Posed Continuous Interpola-
tion Error,” SIAM Journal on Numerical Analysis, Vol. 49, No. 1, pp. 38-60, 2011 (cit. on p. 34).

[65] P. Frey and P. George, Mesh Generation: Application to Finite Elements: Second Edition. January 2008
(cit. on p. 34).

[66] A. Loseille, “Metric-Orthogonal Anisotropic Mesh Generation,” Procedia Engineering, Vol. 82, pp. 403—
415, 2014, 22nd International Meshing Roundtable (cit. on pp. 35, 52, 109).

[67] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.
Gropp, D. Kaushik, M. Knepley, D. May, L. C. McInnes, K. Rupp, P. Sanan, B. Smith, S. Zampini,
H. Zhang, and H. Zhang, “PETSc Users Manual,” ANL-95/11 - Revision 3.8, Argonne National
Laboratory, 2017 (cit. on p. 38).

[68] P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of
Computational Physics, Vol. 43, No. 2, pp. 357-372, 1981 (cit. on p. 38).

[69] F. Bassi and S. Rebay, “GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes
Equations,” in Discontinuous Galerkin Methods: Theory, Computation and Applications, K. Cockburn and
Shu, Eds., Berlin: Springer, 2000, pp. 197—208 (cit. on p. 38).

[70] A. Stroud, Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., 1971 (cit. on p. 38).

[71] R. Becker and R. Rannacher, “An Optimal Control Approach to A Posteriori Error Estimation in
Finite Element Methods,” in Acta Numerica, A. Iserles, Ed., Cambridge University Press, 2001 (cit.
on p. 39).

[72] J. Kudo, “Robust Adaptive High-Order RANS Methods,” Master’s thesis, Massachusetts Institute
of Technology, Computation for Design and Optimization, June 2014 (cit. on p. 41).

[73] P. George, “Gamanic3d, Adaptive Anisotropic Tetrahedral Mesh Generator,” Technical Report, IN-
RIA, 2002 (cit. on p. 43).

[74] G.Rokos, G.]. Gorman, J. Southern, and P. H. J. Kelly, “A Thread-Parallel Algorithm for Anisotropic
Mesh Adaptation,” arXiv:1308.2480, 2013 (cit. on p. 43).

[75] D. A. Ibanez, “Conformal Mesh Adaptation on Heterogeneous Supercomputers,” PhD thesis, Rens-
selaer Polytechnic Institute, 2016 (cit. on pp. 43, 76).

[76] C. Dobrzynski, “MMG3D: User Guide,” Technical Report RT-0422, INRIA, March 2012 (cit. on p. 43).

140 BIBLIOGRAPHY

[77] B. M. Klingner and J. R. Shewchuk, “Aggressive Tetrahedral Mesh Improvement,” in Proceedings of
the 16th International Meshing Roundtable, October 2007, pp. 3—23 (cit. on p. 44).

[78] C. Gruau and T. Coupez, “3D Tetrahedral, Unstructured and Anisotropic Mesh Generation with
Adaptation to Natural and Multidomain Metric,” Computer Methods in Applied Mechanics and Engi-
neering, Vol. 194, No. 48-49, pp. 4951-4976, 2005 (cit. on p. 44).

[79] P. C. Caplan, “An Adaptive Framework for High-Order, Mixed-Element Numerical Simulations,”
Master’s thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronau-
tics, June 2014 (cit. on p. 53).

[80] A.Huerta, A. Angeloski, X. Roca, and J. Peraire, “Efficiency of High-Order Elements for Continuous
and Discontinuous Galerkin Methods,” International Journal for Numerical Methods in Engineering, Vol.
96, No. 9, pp. 529-560, 2013 (cit. on p. 53).

[81] Unstructured Grid Adaptation Working Group, UGAWG GitHub repository, https://github.com/
UGAWG, 2019 (cit. on p. 60).

[82] H. Digonnet, T. Coupez, P. Laure, and L. Silva, “Massively Parallel Anisotropic Mesh Adaptation,”
The International Journal of High Performance Computing Applications, Vol. 33, No. 1, pp. 3—24, 2017
(cit. on pp. 76, 109).

[83] C. Tsolakis, N. Chrisochoides, M. Park, A. Loseille, and T. Michal, “Parallel Anisotropic Unstruc-
tured Grid Adaptation,” in 2019 AIAA Science and Technology Forum, 2019-1995, 2019 (cit. on p. 76).

[84] M. C. Galbraith, S. R. Allmaras, and D. L. Darmofal, “A Verification Driven Process for Rapid
Development of CFD Software,” in 53rd AIAA Aerospace Sciences Meeting, 2015-0818, January 2015
(cit. on p. 77).

[85] A. Grundmann and H. M. Moller, “Invariant Integration Formulas for the n-Simplex by Combina-
torial Methods,” SIAM Journal on Numerical Analysis, Vol. 15, pp. 282—290, April 1978 (cit. on p. 7).

[86] P. Houston, E. H. Georgoulis, and E. Hall, “Adaptivity and A Posteriori Error Estimation for DG
Methods on Anisotropic Meshes,” International Conference on Boundary and Interior Layers, 2006 (cit.
on pp. 78, 91).

[87] W. Cao, “An Interpolation Error Estimate on Anisotropic Meshes in R” and Optimal Metrics for
Mesh Refinement,” SIAM Journal on Numerical Analysis, Vol. 45, No. 6, pp. 2368-2391, 2007 (cit. on
pp- 78, 91).

[88] H. W. Kuhn, “Simplicial Approximation of Fixed Points,” Proceedings of the National Academy of
Science, Vol. 61, pp. 1238-1242, December 1968 (cit. on pp. 78, 121, 127).

[89] H. A. Carson, D. L. Darmofal, M. C. Galbraith, and S. R. Allmaras, “Analysis of Output-Based Error
Estimation for Finite Element Methods,” Applied Numerical Mathematics, Vol. 118, pp. 182—202, 2017
(cit. on pp. 94, 101).

[90] E. Abbott, Flatland: A Romance of Many Dimensions. Roberts Brothers, 1885 (cit. on p. 107).

[91] J. Chawner, J. Dannenhoffer, M. Gammon, C. Ollivier-Gooch, B. Jones, J. Masters, T. Michal, N.

Taylor, H. Thornburg, and C. Woeber, 2nd AIAA Geometry and Mesh Generation Workshop, http:
//www .gmgworkshop. com, 2019 (cit. on p. 110).

[92] E. Bassi and S. Rebay, “High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler
Equations,” Journal of Computational Physics, Vol. 138, No. 2, pp. 251-285, 1997 (cit. on p. 110).

BIBLIOGRAPHY 141

[93] P-O. Persson and]. Peraire, “Curved Mesh Generation and Mesh Refinement using Lagrangian
Solid Mechanics,” in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and
Aerospace Exposition, 2009-0949, 2009 (cit. on p. 110).

[94] M. Fortunato and P.-O. Persson, “High-order Unstructured Curved Mesh Generation using the
Winslow Equations,” Journal of Computational Physics, Vol. 307, pp. 1-14, 2016 (cit. on p. 110).

[95] X. Roca, A. Gargallo-Peir6, and]. Sarrate, “Defining Quality Measures for High-Order Planar Tri-
angles and Curved Mesh Generation,” in Proceedings of the 20th International Meshing Roundtable,
Springer Berlin Heidelberg, 2011, pp. 265383 (cit. on p. 110).

[06] E. Ruiz-Gironés, X. Roca, and J. Sarrate, “High-Order Mesh Curving by Distortion Minimization
with Boundary Nodes Free to Slide on a 3D CAD Representation,” Computer-Aided Design, Vol. 72,
pp- 52-64, 2015 (cit. on p. 110).

[97] E. Ruiz-Gironés, J. Sarrate, and X. Roca, “Defining an L2-Disparity Measure to Check and Improve
the Geometric Accuracy of Non-Interpolating Curved High-Order Meshes,” Procedia Engineering,
Vol. 124, pp. 122-134, 2015, 24th International Meshing Roundtable (cit. on p. 110).

[08] E. Ruiz-Gironés, J. Sarrate, and X. Roca, “Generation of Curved High-order Meshes with Optimal
Quality and Geometric Accuracy,” Procedia Engineering, Vol. 163, pp. 315-327, 2016, 25th Interna-
tional Meshing Roundtable (cit. on p. 110).

[99] E. Ruiz-Gironés, A. Gargallo-Peir6, J. Sarrate, and X. Roca, “An Augmented Lagrangian Formu-
lation to Impose Boundary Conditions for Distortion-Based Mesh Moving and Curving,” Procedia
Engineering, 2017, 26th International Meshing Roundtable (cit. on p. 110).

[100] A. Gargallo-Peir6, X. Roca, and J. Sarrate, “A Surface Mesh Smoothing and Untangling Method
Independent of the CAD Parameterization,” Computational Mechanics, Vol. 53, No. 4, pp. 587-609,
2014 (cit. on p. 110).

[101] A. Gargallo-Peir6, X. Roca, J. Peraire, and J. Sarrate, “Defining Quality Measures for Validation
and Generation of High-Order Tetrahedral Meshes,” in Proceedings of the 22nd International Meshing
Roundtable, Springer, 2014, pp. 109-126 (cit. on p. 110).

[102] T. Toulorge, J. Lambrechts, and J.-F. Remacle, “Optimizing the Geometrical Accuracy of Curvilinear
Meshes,” Journal of Computational Physics, Vol. 310, pp. 361-380, 2016 (cit. on p. 110).

[103] A.Johnen,]J.-F. Remacle, and C. Geuzaine, “Geometrical Validity of Curvilinear Finite Elements,”
Journal of Computational Physics, Vol. 233, pp. 359—372, 2013 (cit. on p. 111).

[104] A. Johnen, C. Geuzaine, T. Toulorge, and J.-F. Remacle, “Efficient Computation of the Minimum of
Shape Quality Measures on Curvilinear Finite Elements,” Procedia Engineering, Vol. 163, pp. 328-339,
2016, 25th International Meshing Roundtable (cit. on p. 111).

[105] R. Feuillet, A. Loseille, and F. Alauzet, “P2 Mesh Optimization Operators,” in Proceedings of the 27th
International Meshing Roundtable, 2018 (cit. on p. 111).

[106] T. Coupez, “On a Basis Framework for High Order Anisotropic Mesh Adaptation,” in Proceedings of
the 26th International Meshing Roundtable, Springer Berlin Heidelberg, 2017 (cit. on p. 111).

[107] A. Loseille and R. Feuillet, “Vizir: High-order Mesh and Solution Visualization using OpenGL 4.0
Graphic Pipeline,” in 2018 AIAA Aerospace Sciences Meeting, 2018-1174, January 2018, pp. 1-13 (cit.
on p. 111).

142 BIBLIOGRAPHY

[108] J. V. Langenhove, D. Lucor, F. Alauzet, and A. Belme, “Goal-Oriented Error Control of Stochas-
tic System Approximations using Metric-Based Anisotropic Adaptations,” Journal of Computational
Physics, Vol. 374, pp. 384—412, 2018 (cit. on p. 112).

[109] R. Haimes and M. Drela, “On The Construction of Aircraft Conceptual Geometry for High-Fidelity

Analysis and Design,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, 2012683, 2012 (cit. on p. 113).

[110] R. Haimes and J. Dannenhoffer, “The Engineering Sketch Pad: A Solid-Modeling, Feature-Based,
Web-Enabled System for Building Parametric Geometry,” in 215t AIAA Computational Fluid Dynamics
Conference, 2013-3073, 2013 (cit. on pp. 113, 122).

[111] R. Haimes and]. Dannenhoffer, “EGADSlite: A Lightweight Geometry Kernel for HPC,” in AIAA
Aerospace Sciences Meeting, 2018-1401, January 2018 (cit. on pp. 113, 128).

[112] L. E. Sutherland and G. W. Hodgman, “Reentrant Polygon Clipping,” Communications of the ACM,
Vol. 17, No. 1, pp. 3242, January 1974 (cit. on p. 114).

[113] B. Lévy, “Robustness and Efficiency of Geometric Programs: The Predicate Construction Kit,”
Computer-Aided Design, Vol. 72, pp. 3—12, 2016 (cit. on p. 114).

[114] M. Henk, J. Richter-Gebert, and G. M. Ziegler, “Basic Properties of Convex Polytopes,” in Handbook
of Discrete and Computational Geometry, 2nd Ed. 2004 (cit. on p. 114).

[115] E. Cohen, R. F. Risenfeld, and G. Elber, Geometric Modeling with Splines. A K Peters/CRC Press, 2001
(cit. on p. 122).

[116] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang, “On Centroidal Voronoi Tessellation:
Energy Smoothness and Fast Computation,” ACM Transactions on Graphics, Vol. 28, No. 4, 101:1—-
101:17, September 2009 (cit. on pp. 124, 128).

[117] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Transaction on Information Theory, Vol. 28,
No. 2, pp. 129-137, 1982 (cit. on p. 124).

[118] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi Tessellations: Applications and Algo-
rithms,” SIAM Review, Vol. 41, pp. 637-676, 1999 (cit. on p. 124).

[119] Q. Du and M. Gunzburger, “Grid Generation and Optimization Based on Centroidal Voronoi Tes-
sellations,” Applied Mathematics and Computation, Vol. 133, pp. 591-607, 2002 (cit. on p. 124).

[120] Q. Du and D. Wang, “Tetrahedral Mesh Generation and Optimization Gased on Centroidal Voronoi
Tessellations,” International Journal for Numerical Methods in Engineering, Vol. 56, pp. 1355-1373, 2003
(cit. on p. 124).

[121] ——, “Anisotropic Centroidal Voronoi Tessellations and their Applications,” SIAM Journal on Scien-
tific Computing, Vol. 26, No. 3, pp. 737—761, 2005 (cit. on p. 124).

[122] J. R. Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predi-
cates,” Discrete & Computational Geometry, Vol. 18, No. 3, pp. 305-363, 1996 (cit. on p. 129).

[123] H. Edelsbrunner and E. P. Miicke, “Simulation of Simplicity: A Technique to Cope with Degenerate
Cases in Geometric Algorithms,” ACM Transactions on Graphics, Vol. 9, No. 1, pp. 66-104, 1990 (cit.
on p. 130).

	Introduction
	Motivation
	Background
	Objectives

	Preliminaries
	Meshes
	Metric fields
	Metric-conforming meshing
	Numerical discretization of partial differential equations
	MOESS
	Summary

	Four-dimensional mesh adaptation
	Background
	Dimension-independent local operators
	The importance of the geometry metadata
	Scheduling the local operators
	Assessment of the mesh adaptation capability
	Perspectives

	Applications to adaptive simulations
	Background
	L2 error control
	Scalar advection-diffusion
	Perspectives

	Conclusions
	Summary
	Future work

	Geometry and visualization
	Background
	A simple result from polytope theory
	Tesseract geometry
	Visualizing a four-dimensional mesh
	Perspectives

	Restricted Voronoi diagrams
	Background
	Centroidal Voronoi tessellations
	Computing restricted Voronoi simplices
	Perspectives

	Software implementation notes
	avro
	SANS

