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Abstract An algorithm for isometrically embedding curvilinear meshes defined
on Riemannian metric spaces into Euclidean spaces of sufficiently high dimension
is presented. The method is derived from the Landmark-Isomap algorithm and a
previous method for embedding straight-sided meshes. The former is used to de-
crease the computational complexity of the embedding problem, notably the dense
shortest-path problem used to estimate geodesic lengths across the mesh domain
as well as the dense eigenvalue decomposition needed to compute the codimension
coordinates. A method for defining curvilinear meshes from straight-sided ones in
a dimension-independent manner is also discussed. Examples in two- and three-
dimensions for both analytic embeddings and analytic metric fields are used to eval-
uate the method.

1 Introduction

High-order discretisations of partial differential equations demand a curvilinear rep-
resentation of the mesh geometry [1]. Within an adaptive framework for numerical
simulations, the curvilinear metric-conforming mesh can either be generated na-
tively or a posteriori from a straight-sided metric-conforming mesh. Recent interest
in using isometric embeddings [3, 5–7, 14], founded on the Nash embedding theo-
rem, offer the potential to generate curvilinear metric-conforming meshes in a native
manner [4] by projecting high-order mesh vertices to the embedded mesh during
the mesh generation stage. This work answers an important question related to the
ability to natively generate curvilinear metric-conforming meshes: how to embed
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a curvilinear mesh equipped with a Riemannian metric into a Euclidean space of
sufficiently high dimension? In particular, an algorithm for embedding curvilinear
meshes given an initial linear mesh and spatially continuous definition of a metric
field is introduced. The algorithm is then evaluated by studying the effect of the ge-
ometric mesh order and ambient dimension of the Euclidean space on the isometry
of the embedded curvilinear mesh. Examples drawn from analytic embeddings and
analytic metrics in 2d and 3d are used to illustrate the method.

2 Methodology

This section describes the methodology used to embed curvilinear meshes, upon
which a spatially continuous field of metric tensors is assumed. Before doing
so, consider how a curvilinear mesh can be constructed from a linear one in a
dimension-independent manner.

2.1 Construction of curvilinear meshes

In essence, this section describes how any high-order continuous Galerkin field can
be defined from a straight-sided mesh but it is important to illustrate the mechanics
of this procedure since, to our knowledge, this has not been covered in the literature
for higher-dimensional (d > 3) simplicial meshes.

Given a straight-sided d-simplicial mesh T ∈ Rd , the first step consists of iden-
tifying all j-simplices 0 ≤ j ≤ d in T along with the set of d-simplices and local
facet labels from which each facet is constructed. As an example, a tetrahedral mesh
is first decomposed into its vertices, edges, triangles and tetrahedra along with the
parent tetrahedra and local indices within each parent tetrahedron that these ver-
tices, edges and triangles are constructed. Note the identification of the 0-simplices
and d-simplices is trivial. All other j-simplices are identified by hashing a string
representing the sorted integers describing the facet. Another option might be to
represent each facet as ∑

| f |
i=0 fini

v where nv is the number of vertices in T , however,
this risks overflowing the integer representation; as such, the string representation
is preferred when hashing the facets upon construction. The labelling of this facet
decomposition is illustrated in the sketch of Fig. 1a.

The next step consists of placing equispaced high-order nodes along the interior
of each j-simplex j≤ d. Each j-simplex is then fully defined by identifying the local
indices of the d-simplex lattice coordinates corresponding to every vertex. Should a
boundary representation of the geometry be provided, vertices can be projected to
the appropriate entities.

For visualization purposes, the list of triangles and edges can be obtained by
extracting the bounding 2− and 1−simplices of the d-triangulation obtained with,
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(a) Facet decomposition of the reference
tetrahedron. Parentheses indicate either a
vertex (v), edge (e) or triangle (t). The only
facet not visible is the triangle 1(t)).
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(b) Convergence to the analytic volume of a
curved domain for a 4d curvilinear mesh with
various geometric mesh orders.

Fig. 1: Demonstration of facet decomposition in 3d and verification of curvilinear
construction process in 4d.

say, a Delaunay triangulation of the lattice coordinates of the curvilinear reference
simplex.

As a demonstration of the d-dimensional curvilinear construction process, an
initially straight-sided Kuhn-Freudenthal triangulation in [0,1]d [13] is augmented
to various curvilinear mesh orders. The first two coordinates of the vertices in this
curvilinear mesh are then mapped to polar coordinates, 0 ≤ r ≤ 1, 0 ≤ θ ≤ π with
the remaining dimensions arbitrarily stretched to ld = d. The volume of the mesh is
computed by integrating over the elements, using high-order Lagrange basis func-
tions from Burkardt [2] along with Grundmann-Moeller quadrature rules [9]. As
seen in Fig. 1b, the volume of a four-dimensional mesh asymptotically approaches

the analytic one of 1
2 π

d
∏
i=2

li with mesh size h at a rate of hq+1 where h∼m1/d with m

the total number of vertices. Standard curved meshing is focused on approximating
two-dimensional and three-dimensional geometries. Herein we expose one of the
first, if not the first, discussions on setting up curvilinear meshes for 4d problems.
It is worth noting that the focus is on studying the influence of the metric field (and
not the geometry) in the embedding of curvilinear meshes. As such, all geometries
studied in the remainder of the work are straight-sided.
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2.2 Embedding algorithm

Here, the mechanics of the algorithm used to embed a curvilinear mesh are pre-
sented. The only assumption is that a metric field is defined (or can be evaluated)
at the high-order vertex locations. Recent work [4] employs a variant of the Isomap
algorithm of Tenenbaum et al. [10] to embed straight-sided meshes along with a
Riemannian metric to a higher-dimensional Euclidean space. This approach is ad-
vantageous because it reduces the embedding procedure to an eigenvalue decom-
position of a centered distance matrix, however, the computational cost of directly
applying this approach is restrictive due to the dense eigenvalue problem needed to
compute the codimension coordinates, requiring an order of O(n3) operations and
O(n2) where n is the number of vertices in the mesh. Further, the O(n3) running
time of Dijkstra’s algorithm used to estimate the shortest distance between all pairs
of vertices in the mesh is prohibitive. Even in the straight-sided case, this cost be-
comes intractable for large meshes which is further exacerbated by the presence of
curvilinear vertices.

Additionally, it is unclear how curvilinear vertices are “connected” in the gene-
real case to ensure that the result of the shortest path algorithm is valid. To see this,
consider the internal vertex of a q = 3 triangle. A triangulation of the reference
simplex vertices may yield the connections between all curvilinear vertices to con-
struct the graph for Dijkstra’s algorithm but it biases the shortest paths as being the
connections within the reference simplex.

For these two reasons, a sparse approach is sought which is equal in cost to that
of embedding the straight-sided mesh. The methodology is based on the Landmark-
Isomap algorithm of de Silva [8]. Of course, this sparse approach can be used to
obtain embeddings of straight-sided meshes at a lower computational cost but that
is left for future endeavours since the selection of landmarks is less trivial in that
case. Other sparse approaches exist to achieve an isometric embedding at a lower
computational cost, such as Locally Linear Embedding [17] or Semidefinite Em-
bedding [19], however, Landmark-Isomap is preferred here due to its isometry pre-
serving properties and its ability to work from the embedding of the straight-sided
mesh.

Here, the landmarks are chosen to be the vertices of the straight-sided mesh. As
such, the first step consists of embedding the vertices of the straight-sided mesh.
The full computational approach to embed a curvilinear mesh is described in Al-
gorithm 1. The number of vertices in the straight sided (q1) mesh is denoted by n
whereas the number of vertices in the high-order curvilinear (q) mesh is denoted by
m.

The algorithm up to line 19 essentially computes the embedding of the vertices
of the straight-sided mesh. The remainder of the algorithm computes the distance
from each curvilinear vertex to each landmark vertex (line 30) which is stored in the
matrix R. This is done by first identifying the set of landmark vertices (N ) in the
set of elements (K) referencing the i-th vertex. The distance from this vertex to all
local landmarks in N is then computed using the provided metric field and stored
in p. To estimate the distance to all remaining landmark vertices, the local landmark
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1 function T N
d = embed (Td ,m,N0);

Input : Td ,m,N0
Output: T N

d
2 E← getEdges(Td);
3 for e ∈ E do
4 `e = metricLength(e,m);
5 le = euclideanLength(e);
6 fe = (`e/le)2;
7 end
8 fmax←max({ fe})∀e ∈ E;
9 for e ∈ E do

10 G(e0,e1)←
√

fmax`2
e − l2

e ; /* setup the graph adjacency matrix */
11 end
12 d = dijkstra(G) ; /* geodesic length between linear vertices */
13 µ ← mean(d) ; /* row-wise mean of d */

14 D = d2 ; /* squared geodesic lengths */

15 B =− 1
2 JDJ ; /* where the centering matrix J = I−11t/n */

16 (Q,Λ) = eig(B) ; /* eigendecomposition of B */
17 V = QN0 ;
18 L = Λ N0 ; /* save N0 largest eigenvalues and eigenvectors */
19 Rn,m = 0 ; /* initial pairwise distance matrix to landmarks */
20 for i = 1, . . . ,m do
21 K← elementsWithVertex(i); /* any d-simplex with vertex i */
22 N ← allLinearVertices(K);
23 p← 0 ; /* initial distance from i to members of N */
24 for j ∈N do
25 `i, j = metricLength({i, j},m) ; /* distance between i and j */
26 li, j = euclideanLength({i, j});
27 p j =

√
fmax`2

i, j− l2
i, j;

28 end
29 for j = 1, . . . ,n do
30 l = argminp||p+d(p, j)|| ; /* closest landmark to landmark j */

31 R( j, i) = ||pl +d(pl , j)||;
32 end
33 L#← 0 ; /* apply landmark-Isomap to Dn,m */
34 for i = 1, . . . ,N0, j = 1, . . . ,n do
35 L#(i, j) = V( j, i)/

√
L(i, i);

36 end
37 for i = 1, . . . ,m do
38 b =− 1

2

(
R(:, i)2−µ

)
;

39 u0 = L#b ; /* codimension coordinates */
40 ui = [xi,u0/

√
fmax] ; /* embedding coordinates by lifting */

41 end
42 end

Algorithm 1: Embedding algorithm
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vertex l corresponding to the minimizer of ||p+ d(p, j)|| is used as the distance
from vertex i to landmark j. Lines 33–39 are referred to as the distance-based trian-
gulation portion of the landmark-Isomap algorithm [8]. The embedding coordinates
computed in line 40 are modified similar to previous efforts [4] to achieve a one-
to-one mapping between the original mesh and the embedded one. Note the same
factor fmax is used (computed from the original distance matrix) to modify the local
distances between the curvilinear vertices and the landmarks (line 27) since these
are shorter than any local distance between landmarks.

As in previous work [4], the algorithm is sensitive to the codimension of the
ambient Euclidean space (N0) which corresponds to the number of eigenvalues and
eigenvectors retained from the decomposition of the centered disparity matrix (line
16). The next section studies the effect of N0 on the isometry achieved by the algo-
rithm.

It is worth mentioning that the current work simply focuses on developing an
algorithm to isometrically embed curvilinear meshes with a metric field into a Eu-
clidean space. The current focus is not on the validity of the embedded mesh but is
the subject of future work.

3 Numerical studies

Here the developed algorithm is applied using various analytic metric fields with
different geometric orders of the mesh (q) and different embedding dimensions.
The procedure used to evaluate the embedding approach is outlined below:

1. Obtain a straight-sided metric-conforming mesh using the software fefloa [15,
16] which is based on a unique approach to perform a variety of local mesh
operations to achieve a straight-sided metric-conforming mesh,

2. Construct the curvilinear mesh from the straight-sided one using the method of
Section 2.1,

3. Sweep over embedding dimensions:

• Embed the curvilinear mesh using the algorithm of Section 2.2 into a Eu-
clidean space of dimension N = d +N0,

• Compute the edge lengths of the embedded mesh. A Lagrange basis for the
high-order basis functions is used to compute these lengths. The edge lengths
are reported as a histogram in the following section. Since the mesh produced
by fefloa is metric-conforming, these edges should be of unit length in the
embedding space.
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3.1 Analytic embeddings

The first case studied is defined by the embedding into a Euclidean space of unit
codimension:

u(x) = [x,5tanh(10y−20cos(πx/5)−50)] , x = [0,10]2. (1)

The metric is then m(x) = ∇u ·∇u. The linear mesh produced by fefloa is shown
in Fig. 2a and the edge length histograms produced by embedding this straight-sided
mesh into Euclidean spaces of various dimensions is shown in Fig. 2b. The best
isometry is achieved for a unit codimensional space which is expected since the
analytic embedding is defined in three-dimensional space. The edge lengths tend
to increase when the dimension of the ambient Euclidean space is increased. The
sacrifice in local edge length isometry is due to the fact that longer geodesics are
better matched by the greater number of eigenvalues taken in the decomposition of
the centered disparity matrix (B in Algorithm 1).

(a) Metric conforming straight-sided mesh
for the embedding of Eq. 1.
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Fig. 2: Edge length histogram for edges produced by embedding the straight-sided
mesh conforming to the embedding of Eq. 1 into Euclidean spaces of various di-
mensions.

The embedded linear mesh and curvilinear mesh edges are shown in Figs. 3a and
3b, respectively. As indicated by the better isometry induced by the greater num-
ber of unit edge lengths of the histogram in Fig. 4a, it that seems increasing the
geometric order of the meshes improves the representation of the metric in three-
dimensional space. However, observe the oscillatory behaviour of these edges in
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Fig. 3b. Though better isometry seems to be achieved, the resulting embedding may
not produce valid elements in the embedding space. Ongoing work consists of eval-
uating the validity of the embedded mesh with a variant of the algorithm of Johnen
et al. in higher-dimensional spaces [11,12]. Though the best isometry is achieved in
three-dimensional space, the edge length histogram produced across various curvi-
linear mesh orders is given for a five-dimensional embedding in Fig. 4b. As stated
earlier, the local edge lengths are longer than they should be, likely a result of bet-
ter representing the longer geodesics across the domain with the greater number of
eigenvalues retained.

(a) Embedded straight-sided mesh
produced with the metric field derived
from Eq. 1.

(b) Close-up (of the section in the red box of the
left figure) of the curvilinear mesh edges pro-
duced by the metric field derived from Eq. 1.

Fig. 3: Straight-sided and curvilinear meshes produced by embedding the mesh con-
forming to the metric derived from the embedding of Eq. 1.

A similar procedure is used to study a three-dimensional case, whereby an ana-
lytic embedding into four-dimensional space is defined by

u(x) =
[
x,10tanh(10||x||2−0.752)

]
, x = [0,1]3. (2)

Unlike its two-dimensional counterpart, this case achieves the best isometry
when embedded into a five-dimensional Euclidean space; see Fig. 5b. It is inter-
esting, however, that isometry can be recovered in four dimensions by using a
high-order embedding as demonstrated in the edge lengths of Fig. 6a. For higher-
dimensional embeddings, however, the lower order embeddings achieve better isom-
etry since the higher-order ones generate longer edge lengths, likely due to approx-
imating the longer geodesics across the domain (Fig. 6b).
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(a) Edge length histogram for edges pro-
duced by embedding curvilinear meshes for
the metric conforming to the embedding of
Eq. 1 into three-dimensional space.
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the metric conforming to the embedding of
Eq. 1 into five-dimensional space.

Fig. 4: Edge length histogram for edges produced by embedding curvilinear meshes
for the metric conforming to the embedding of Eq. 1 into three- and five-dimensional
space.

(a) Metric conforming straight-sided mesh
for the embedding of Eq. 2.
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(b) Edge length histogram for edges pro-
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Fig. 5: Edge length histogram for edges produced by embedding the straight-sided
mesh conforming to the embedding of Eq. 2 into Euclidean spaces of various di-
mensions.
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(a) Edge length histogram for edges pro-
duced by embedding curvilinear meshes for
the metric conforming to the embedding of
Eq. 2 into four-dimensional space.
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(b) Edge length histogram for edges pro-
duced by embedding curvilinear meshes for
the metric conforming to the embedding of
Eq. 2 into six-dimensional space.

Fig. 6: Edge length histogram for edges produced by embedding curvilinear meshes
for the metric conforming to the embedding of Eq. 2 into four- and six-dimensional
space.

3.2 Analytic metric fields

Now the method is studied with analytic metric fields. In particular, the metrics
defined by

m(x) =


1

(|x−0.5|+0.0025)2 0 0
1

(|y−0.5|+0.0025)2 0
1

(|z−0.5|+0.0025)2

 , x ∈ [0,1]3 (3)

and

m(x) =


cos2 θ

h2
x

+ sin2 θ

h2
y

( 1
h2

x
− 1

h2
y
)cosθ sinθ 0

sin2 θ

h2
x

+ cos2 θ

h2
y

0

4

 , x ∈ [0,1]3 (4)

where hx =min(0.005 ·5a,0.5), hy =min(0.1 ·2a,0.5) (a= 10|0.75−
√

x2 + y2| and
θ = arctan(x,y)) [18], are used to create straight-sided metric-conforming meshes
with fefloa (Figs. 7a and 9a). The embedding algorithm is applied as in the last
section, however, the dimension of the ambient Euclidean space cannot be predicted
a priori. As such, a sweep over dimensions is used to embed the straight-sided mesh;
the histogram of edge lengths resulting from this sweep is shown in Figs. 7b and 9b.

The metric of Eq. 3 appears to be best represented in five- and six-dimensional
Euclidean spaces. As such, these spaces are used to now sweep over the geometric
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orders of the mesh, the histograms of which are shown in Figs. 8a and 8b. Little dif-
ference is observed across the different mesh orders in five-dimensional space but
isometry seems to degrade with increased mesh order in six-dimensions since it ap-
pears that edges become longer for reasons stated earlier. It is further surprising that
only five dimensions are needed to represent this metric field isometrically because
of the three directional variations in the metric, implying three codimensions would
be needed. Further theoretical work is needed to understand this result.

(a) Metric conforming straight-sided mesh
for the embedding of Eq. 3.
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(b) Edge length histogram for edges pro-
duced by embedding the straight-sided mesh
conforming to the embedding of Eq. 3 into
Euclidean spaces of various dimensions.

Fig. 7: Edge length histogram for edges produced by embedding the straight-sided
mesh conforming to the embedding of Eq. 3 into Euclidean spaces of various di-
mensions.

The metric of Eq. 4 is best represented in four- and five-dimensional space as
observed in the edge length histogram of Fig. 9b. Isometry slightly improves with
increasing curvilinear mesh order in four dimensions but little difference is observed
in five dimensions (see Figs.10a and 10b). This further supports the finding that
when the ambient dimension of the Euclidean space is not high enough to achieve
an isometric embedding of a straight-sided mesh, better isometry can be achieved
by embedding a curvilinear representation of the mesh instead. However, when the
straight-sided mesh is well represented by an embedding of its vertices into a suit-
able Euclidean space, then little difference is observed when increasing the geomet-
ric order of the embedded mesh.
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(a) Edge length histogram for edges pro-
duced by embedding curvilinear meshes for
the metric conforming to the embedding of
Eq. 3 into five-dimensional space.
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(b) Edge length histogram for edges pro-
duced by embedding curvilinear meshes for
the metric conforming to the embedding of
Eq. 3 into six-dimensional space.

Fig. 8: Edge length histogram for edges produced by embedding curvilinear meshes
for the metric conforming to the embedding of Eq. 3 into five- and six-dimensional
space.

(a) Metric conforming straight-sided mesh
for the embedding of Eq. 4.
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Fig. 9: Edge length histogram for edges produced by embedding the straight-sided
mesh conforming to the embedding of Eq. 4 into Euclidean spaces of various di-
mensions.
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(a) Edge length histogram for edges pro-
duced by embedding curvilinear meshes for
the metric conforming to the embedding of
Eq. 4 into four-dimensional space.
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(b) Edge length histogram for edges pro-
duced by embedding curvilinear meshes for
the metric conforming to the embedding of
Eq. 4 into five-dimensional space.

Fig. 10: Edge length histogram for edges produced by embedding curvilinear
meshes for the metric conforming to the embedding of Eq. 4 into four- and five-
dimensional space.

4 Conclusions and future work

This work introduced an algorithm for embedding curvilinear meshes into Eu-
clidean spaces. The first step consisted of defining a curvilinear mesh from a metric-
conforming straight-sided one. The next step consisted of embedding the straight
sided mesh into Euclidean spaces of various dimensions and analyzing which di-
mension closely approximates the local geodesic lengths. Curvilinear meshes of
varying geometric order were then embedded to the chosen Euclidean spaces. The
findings suggest that when the dimension of the Euclidean space is not high enough,
then isometry can be improved by increasing the geometric order of the mesh. How-
ever, when the embedding of the straight-sided mesh is sufficiently isometric, then
little difference is observed in the produced edge lengths across geometric mesh
orders.

Future work consists in using the produced embeddings to directly generate
curvilinear metric-conforming meshes. A local approach for doing so, similar to the
cavity-based approach of Loseille [15, 16] is attractive due to its ability to enlarge
initially invalid cavities when inserting high-order vertices.
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