This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use (1) the midterm “cheat sheet” from the course page, and (2) a single double-sided sheet of notes. **You have 2 hours.** Read the problem descriptions carefully and write your answers clearly and legibly in the space provided. Circle or otherwise indicate your answer if it might not be easily identified. You may use extra sheets of paper, stapled to your exam, if you need more room, as long as the problem number is clearly labeled and your name is on the paper. If you attached extra sheets indicate on your main exam paper to look for the extra sheets for that problem.

You do not need to include comments, docstrings or constants in your code.
1. [14 points] Warming up

 (a) [2 points] Briefly indicate the respective audiences for docstrings and inline/block comments (i.e. after the # symbol)?

 (b) [4 points] Quick coding: Write a function `twodice` that returns an integer simulating the sum of two dice rolled simultaneously, for example:

   ```python
   >>> twodice()
   10
   >>> twodice()
   2
   ```

 (c) [8 points] Quick coding: Write two functions, one using a `for` loop and the other using a `while` loop, to print every other number from 10 to 0, starting with 10, one number per line.
2. [12 points] Slice and dice

Given the variables s and t with the following values:

```
>>> s
'simon says'
>>> t
'jump around'
```

Evaluate the following expressions and provide the resulting value.

(a) $t[:5] + s[:5]$

(b) $s[:6] + s[-9:-11:-1] + s[5:8] + t[-1]$

(c) $((t.capitalize() + "! ") * 3).strip()$

(d) $(t.split()[0] + " " + t[1:4:2] + "!").upper()$
Consider the following Python code:

```python
def bar(s):
    print(s)
    return len(s)

def foo(s):
    r = 1
    for i in range(len(s)):
        bar(s[i:])
        r = r * (-bar(s[i:]))
    return r

y = foo("test")
```

After execution what is the value of \(y \) and what, if anything, is printed in the console?
4. **[14 points] Coding**

 Write a function called `swap_every_pair` that “encrypts” a string by swapping every pair of letters. For example:

 >>> swap_every_pair("banana")
 'abanan'
 >>> swap_every_pair("Hello")
 'eHllo'
5. [14 points] T/F
 For each of the statements below state whether they are true or false.

 _____ If s is an even-length string, s[len(s)//2:] evaluates to the second half of the string.

 _____ 7%3 + 5//2 + 7/4 evaluates to 4.75.

 _____ "hello".capitalize().replace("E", "A").lower() would evaluate to "hallo".

 _____ [["a", "b", "c"], "def"] [1] [1] evaluates to "b".

 _____ The following two functions do the same thing:

   ```python
   def f(num):
       if num // 2 < 10:
           return False
       else:
           return True
   
   def g(num):
       return num >= 20
   ```

 _____ The following function would return the last line in a non-empty file:

   ```python
   def last_line_of_file(filename):
       with open(filename, "r") as file:
           for line in file:
               last_line = line
       return last_line
   ```

 _____ In Python all for loops can be replaced with an equivalent while loop.
6. [12 points] We’ve got problems

(a) [6 points] The function below has two boolean parameters, a and b. The function works correctly, however, it is too long and it uses bad coding style. Rewrite the function in good style to be as concise as possible.

```python
def could_be_better(a, b):
    if a == False and b == False:
        return True
    if a == False and b == True:
        return False
    if a == True and b == False:
        return False
    if a == True and b == True:
        return True
```

(b) [6 points] The following function was designed to return a bool indicating if two uppercase strings of DNA bases (“A”, “C”, “G”, “T”) are identical (defined as have same length and DNA bases). Sometimes we don’t know the DNA base and so use “N” to stand for “any base”, that is “N” is considered identical to any of “A”, “G”, “C”, “T”. Describe the two different situations where this implementation will produce an invalid result or even an error (that is Python would stop and report an error). *Note*, your two situations should highlight different problems not variations of the same issue.

```python
def is_identical(dna1, dna2):
    i = 0
    while i < len(dna1) or i < len(dna2):
        if dna1[i] != "N" and dna2 != "N" and dna1[i] != dna2[i]:
            return False
        i += 1
```
7. [16 points] Coding, take 2

Write a Python function named `equalizer` that will identify students who should switch sections to equalize the number of students in two sections of a class. The section rosters will be provided as text files with one student name per line (as Lastname, Firstname). Your function should have two parameters, the filenames for the section 1 and section 2 rosters, and should print the names of students who should switch and the direction as shown below. You can pick the specific students in any way you want. If the sections have an equal number of students, print “No switching required”.

```python
>>> equalizer("sectionA.txt", "sectionB.txt")
Smith, John switch to section 1
```
8. [10 points] Turtle fun

```python
from turtle import *

def shape(side):
    forward(side)
    for i in range(5):
        right(90)
        forward(side)

base = 0
side = 50
while side < 400:
    shape(side)
    current = side + base
    base = side
    side = current

done()
```

Draw the image that would be created by the above code. Assume that the turtle is initially at the origin, facing right.