1. Which of the following is the best description of selection sort?
 - A. Once a value is placed in the sorted part, it will never move again
 - B. All values in the sorted part are always less than or equal to all values in the unsorted part
 - C. Both of the above are true
 - D. None of the above is true

2. We saw that the time complexity of selection sort was \(O(n^2) \), what is the asymptotic space complexity for auxiliary storage? That is how much additional memory do we need beyond the original array?
 - A. \(O(1) \)
 - B. \(O(\log n) \)
 - C. \(O(n) \)
 - D. \(O(n \log n) \)
 - E. \(O(n^2) \)

Space complexity is the amount of memory needed by an algorithm. For selection sort, beyond the original list, we only need to store the current minimum value and index. Thus the additional storage is \(O(1) \).

3. Which of the following is the best description of merge sort?
 - A. Before the final merge, all values in "left" are less than or equal to all values in "right"
 - B. Before the final merge, all values in "left" are sorted and all values in "right" are "sorted"
 - C. Both of the above are true
 - D. None of the above are true

Since merge sort splits the list in half and sorts the left and right half independently, before the final merge each half is sorted, but there is no relationship between the values in each half.