
Stephen Bloch (Adelphi University)
Amruth Kumar (Ramapo College)

Stanislav Kurkovsky (Central CT State University)
Clif Kussmaul (Muhlenberg College)

Matt Dickerson (Middlebury College), moderator

Panel:
NSF-Sponsored Innovative Approaches to

Undergraduate Computer Science

Project Web site(s) Intervention Delivery Supervision

Program
by Design
Stephen Bloch

NSF awards 0010064
& 0618543

http://programbydesign.org
http://picturingprograms.org
http://www.ccs.neu.edu/home/
matthias/HtDP2e/
http://racket-lang.org
http://wescheme.org

curriculum with supporting
IDE, libraries, & texts

in class; software
and textbook are
free downloads
or web-based

normally active, but can be
done other ways

Problets
Amruth Kumar

NSF award
0817187

http://www.problets.org in- or after-class problem-
solving exercises on
programming concepts

applet in
a browser

none - teacher not needed,
although some adopters use
it in active mode too

Mobile Game
Development
Stan Kurkovsky

NSF award
DUE-0941348

http://www.mgdcs.com/ in-class or take-home
programming projects

PC passive - teacher as
facilitator to answer Qs

POGIL
Clif Kussmaul

NSF award
TUES 1044679

http://pogil.org
http://cspogil.org

in-class activity

paper or web passive - teacher as
facilitator to answer Qs

Project Course(s) Language(s) Focus

Program
by
DesignStephen
Bloch

Middle school,
pre-AP CS in HS,
CS0, CS1, CS2
in college

Usually Scheme-like teaching
languages leading into Java;
has also been done in Python,
ML, Java, Scala, ...

problem-solving process,
particularly test-driven
development and use of data
types to guide coding & testing

Problets
Amruth Kumar

AP-CS, CS I, CS 2.
also as refresher or
to switch languages
in other courses

C, C++, Java, C# code tracing, debugging,
expression evaluation,
predicting program state

Mobile Game
DevelopmentSt
an Kurkovsky

AP-CS, CS1, CS2 Java core OO programming;
intro to advanced subjects
such as AI, networks, security

POGILClif
Kussmaul

CS1, CS2, SE, etc.
CS Principles (HS)
(used across STEM)

often concept-based and
language-independent;
CS1 in Java & Python

knowledge construction,
process skills

Teacher Students

Project prep before class during class after class # during after

Program by
Design
Stephen

select examples model problem-
solving process;
answer questions

feedback to students:
how well did they
follow the process?

solo or
small
team

mostly programming

Problets
Amruth

sign up to get URL;
specify which
problet to use when

none; not even
in supervised
mode

use report to
select concepts
to review in class

solo solving problems
on programming

Mobile
Game
Develop-
ment
Stan

become familiar
with the technical
scaffolding provided
by each project and
with sample solution

explain objectives,
demonstrate
sample solution,
help students with
scaffolding

review completed
programming
projects

teams
of 2

working on
programming project

POGIL
Clif

make copies or post.
(writing activities
is time intensive)

facilitate teams,
share conclusions

review team reports

teams
of 2-4

working
through
activity

summary
report
(optional)

Program By Design
Stephen Bloch, Adelphi University

with Eli Barzilay, John Clements, Matthias Felleisen, Robby Findler, Kathi Fisler,
Matthew Flatt, Kathy Gray, Shriram Krishnamurthi, Viera Proulx, Emmanuel Schanzer, ...

Curricular ideas
●  Start in simple, beginner-friendly language

○  need beginner-friendly IDE & compiler

●  Teach fundamental, transferable principles & habits
●  Test-driven development from the beginning

○  need beginner-friendly testing harness

●  Graphics, animation, GUI, music as motivators
○  need beginner-friendly libraries

●  Then revisit same ideas in “mainstream” language
(next semester or next year)

Pedagogical ideas
●  Concrete design recipe

○  Identify input & output data types
○  Write test cases (guided by data types)
○  Write function skeleton (guided by data types)
○  Fill in gaps (guided by test cases)
○  Run test cases

●  Each step is explicit & worth partial credit
●  Writing test cases is much easier for functional than

imperative code, so start in functional paradigm
○  even for graphics & interaction

●  Functional GUI programming teaches model/view
separation early

Technical ideas
●  Start in language subset…

○  enforced by compiler
○  Several concentric languages matching stages of curriculum

●  Read-eval-print loop to encourage experimentation
○  like DrJava, BlueJ CodePad, irb, python, ghci, etc.

●  “Image” is a data type, just like “integer” or “string”
○  even in the REPL
○  Can enter an image as a literal, interactively
○  Can see images as expression values, interactively

●  Demo: http://screencast.com/t/12O3RGxFH

Versions of the curriculum
●  Bootstrap (middle school)

○  http://bootstrapworld.org

●  Picturing Programs (high school pre-AP,
college CS0)
○  http://picturingprograms.org

●  How to Design Programs 2ed (college CS1)
○  http://www.ccs.neu.edu/home/matthias/HtDP2e/
○  or search “htdp2e”

Software support
●  WeScheme (IDE in a browser, used with

Bootstrap)
○  http://wescheme.org

●  DrRacket (IDE, used with PP and HtDP)
○  http://racket-lang.org

●  JavaLibWorld and JavaLibTester (support
libraries for Java-based course)
○  search on GitHub

Who likes this approach?
●  Grants from Exxon, DoEd, NSF, Google
●  ACM SIGCSE “Outstanding Contribution to

Computer Science Education” award (2011)
●  ACM Karlstrom award (2009)

Who uses this approach?
Bootstrap:
Park Elementary School NYOS Charter School
Ballou High School Boston Latin Academy
Edison Middle School United for Success Academy
Yanbu International School Barnard Saturday Science Seminar
Crossroads School St. Andrew's-Sewanee School
Sedro-Woolley High School Academy for Science and Design
Albuquerque Academy International School Ho Chi Minh City

 124 more omitted

Who uses this approach?
●  University of Toronto

●  University of California, Irvine

●  Vassar College

●  Adelphi University

●  Georgia Regents University

●  Indian Institute of Information Technology and
Management-Kerala, Trivandrum, India

●  St Francis Borgia HS

●  Whitney Young HS

●  The Fay School

●  Lakehill Preparatory School

●  Aberdeen HS

●  Holy Name HS

Picturing Programs:
●  Owatonna HS
●  Bancroft School
●  Dighton-Rehoboth HS
●  Augusta Preparatory Day School
●  Nashoba Regional High School
●  St Luke’s School
●  The Webb Schools
●  oxfordcomputerscience.wikispaces.org (HS

level)
●  DuPont Manual HS (in Scala?)
●  Evergreen Middle School
●  at least one 4th-grade teacher (!)
●  various others omitted

Who uses this approach?

●  University of Chicago
●  Northeastern University
●  University of Delaware
●  Westmont College
●  Worcester Polytechnic Institute
●  University of Notre Dame
●  University of Waterloo
●  Istanbul Bilgi University
●  Seton Hall University
●  Berry College
●  Brown University
●  Monmouth College
●  University of Minnesota Morris
●  Northwestern University
●  Suffolk County Community College
●  University of British Columbia (both traditional course and MOOC)

●  Zefat Academic College
●  UNAM
●  Manhattanville College
●  Rhode Island College
●  University of Tübingen
●  University of Freiburg
●  University of Dallas
●  South Carolina State University
●  Pacific Union College
●  Humboldt College
●  University of Chile (in Python)
●  Ochanomizu University (in OCaML)
●  Carnegie-Mellon (in ML)
●  various others omitted

How to Design Programs

Problets
Amruth Kumar,

amruth@computer.org
problets.org

•  Learn programming concepts by solving
problems

•  Supplement classroom instruction
•  Complement programming projects

Curricular Goals

What Problets do:

•  Present problems
•  Grade student’s answer
•  Provide instant feedback
•  Record student performance
•  Provide summary to the instructor

Types of problems
•  Identify the output of a program
•  Debug a program
•  Resolve the state of program variables
•  Evaluate expressions
::
•  Step-by-step
•  Not multiple-choice problems

Identifying the output

Debugging

State of a variable

Expression Evaluation

Topics (17 modules)
•  Expression evaluation

o  Arithmetic, Relational, Logical, Assignment, Bitwise

•  Selection
o  if, if-else, switch, nested statements

•  Loops
o  while, for, do-while, nested loops, infinite loops

•  Functions - behavior, bugs, recursion
•  Arrays, Access in Classes, C++ pointers

Topics and Problems

•  Languages:
o  Java, C, C++, C#, some Visual Basic

•  Audience:
o  CS I, CS II, AP-CS
o  Refresher for advanced courses/language change

•  Institutions:
o  High school, 2-year, 4-year colleges

Target

Pedagogy
•  Learn by solving problems

o  Mastery learning

•  Step-by-step explanation of correct solution
•  Adaptive problem-sequence
•  Randomized problem set
•  Learning at one’s pace on one’s time

o  Any time, as often as necessary

•  Extensively evaluated over 14 years

Visualization

•  Closed-Lab exercises
•  After-class assignments (24 x 7)
•  Language refreshers

o  As many as necessary
o  When necessary
o  As often as necessary

•  Continuous third-party use since fall 2004
o  60+ schools in spring 2014

Usage

Adoption
•  No software installation necessary - Web-

based
•  No supervision necessary - self-

administering
•  Report available on demand

o  By problems, learning objectives

•  Free for educational use

Snapshot of a report

Contact Information

Additional information at:

www.problets.org
If interested, please contact:

amruth@ramapo.edu
Acknowledgements: NSF CCLI DUE 0088864

Mobile Game Development
Stan Kurkovsky

Central Connecticut State University
http://www.mgdcs.com/

with Archana Chidanandan and Delvin Defoe

•  Improve student engagement and motivation
•  Decrease attrition in introductory CS courses

•  Method: use a relevant learning context

Overarching Goals

Curricular Objectives
•  Expose students to advanced topics
•  Strengthen student mastery of the core

concepts
•  CS is more than just coding!

•  Method: project-based learning modules

Learning Modules
•  Context

o  A well-known game (arcade, board, etc.)
o  Casual games

•  Learning objectives
o  Introduce an advanced topic (e.g. networking)
o  Reinforce a core topic (e.g. for loops)

•  Game implementation
o  Working demo
o  Technical scaffolding

Target
•  Language

o  Java: J2ME, Android

•  Audience
o  AP-CS, CS I, CS II
o  Also: advanced topical courses

•  Institutions
o  High school, 2- and 4-year colleges

Pedagogy
•  Context-based learning
•  Relevance to everyday life
•  Hands-on experiences
•  Teamwork
•  Instant gratification

Sample Modules
•  Battleship - computer networking
•  Connect Four - artificial intelligence
•  Frogger - software engineering
•  Space Bears - human-computer interaction
•  Craps - security
•  Text Twister - algorithms

Process Oriented
Guided Inquiry Learning

(POGIL)
Clif Kussmaul, Muhlenberg College

http://cspogil.org http://pogil.org

POGIL - Curricular Goals
●  Across CS (& other STEM) disciplines,

we should help our students learn to:
○  analyze, design, synthesize ideas
○  read, write, & debug code & docs
○  communicate (oral & written)
○  work in teams, manage time
○  learn or create ideas on their own

POGIL - Pedagogy
●  Research shows that learning

is improved when people:
○  work in teams with other people
○  construct knowledge through

a learning cycle (explore, invent, apply)
○  receive prompt constructive feedback
○  reflect on learning process & outcomes

Process Oriented Guided Inquiry Learning

•  Students work in teams with assigned
roles(e.g. manager, recorder, speaker)

•  Teams work on classroom activities that
present a model followed by questions.

•  Instructor is a facilitator, not a lecturer.
•  Activities are designed to guide students to:

o  construct understanding of key ideas
o  develop key process skills

POGIL Example: 1st Day of CS1
Hi-Lo: Guessing Game
•  Two players – A and B.
•  A picks a number 1-100.
•  B guesses a number.
•  A responds “too high”,

“too low”, or “you win”.
•  Continue to play until

B wins (or gives up).

Questions
1.  Play the game 3 times.
2.  Identify 4-5 strategies

B could use to play.
3.  (Discuss with class.)
4.  Rank by # of guesses.
5.  Rank by difficulty.
6.  Plot rankings &

describe.
7.  (Discuss with class.)

POGIL Example: 1st Day of CS1
Questions

1.  Max # of guesses?
2.  Avg # of guesses?
3.  (Discuss with class.)
4.  Repeat for 1-1000.
5.  Repeat for any N.
6.  Describe insights.
7.  (Discuss with class.)

Strategy S D Max Avg

Random 4 1 100 50

Count up by 1. 3 2 100 50

Count up by 10,
down by 1.

2 3 20 10

Split range
in ½ each time.

1 4 7 6

CS-POGIL
 cspogil.org

•  NSF TUES project (2011-2014)
to develop POGIL materials for CS
o  CS2, Data Structures, Software Engineering
o  sci comp, CS1 (Java, Python), theory, AI, ...

•  Numerous CS collaborators, including:
o  Helen Hu, Lisa Olivieri, Matt Lang, Chris Mayfield,

Heidi Ellis, Stoney Jackson, Tammy Pirmann

•  $$$ available to attend POGIL workshops

The POGIL Project
 pogil.org

•  Non-profit to support use of
POGIL & related approaches

•  Long history of NSF funding (15+ years)
•  3-day regional summer workshops
•  Review POGIL activities,

support classroom implementation

POGIL - Implementations
•  Students: 10-200; HS, undergrad, grad
•  Models: UML, Code, API doc
•  Media

o  Paper copies for each team or student
o  Google Doc for each team
o  Presentation slides

•  Team structure
o  Teams of 4, split for pair programming
o  Teams of 3

DISCUSSION
•  What might the approach not accomplish or

do well?
•  When would you not use it as opposed to

when would you use it?
•  How would your approach combine well

with another of the approaches outlined
here?

