Meet Logisim

Add a gate

Click on the AND gate

Click on the workspace to place it

Set the number of inputs to 2

\odot \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc		Logisim: main of Untitled
👆 📐 A 🖻 🔍 D	\triangleright	
🖉 🏟 🔝 🖸		
+ 1 + X		
🚞 Untitled*		
🖸 main		
Wiring		
🕨 🚞 Gates		
Plexers		
Arithmetic		· · · · · · · · · · · · · · · · · · ·
Memory		1
Input/Output		· · · · · · · · · · · · · · · · · · ·
▶ 🚞 Base		
Selection: AND Gate		
Facing East		
Data Bits 1		
Gate Size Medium		
Number Of Inputs 2		
Output Value 0/1		
label		
Label Font SansSerif Plain 1	2	
Negate 1 (Top) No	-	
Negate 2 (Potto No		
Negate 2 (Botto No		
100%	•	

Connect the gate to some pins

Add two input pins behind the gate

Add an output pin in front of the gate

Draw the wires in (click and drag -- if you look closely, you will see little dots where wires can connect)

$\odot \bigcirc \bigcirc$	Logisim: main of Untitled
$ \mathbf{k} \mathbf{k} \mathbf{A} \mid \mathbf{E} \mathbf{O} \mathrel{ ightarrow} D D $	
🖉 🖚 🗈 🖸	
T T + A	
a main	
Wiring	
Gates Gates	
Arithmetic	
Generation Memory	
 Base 	
Circuit: main	
Circuit Name main	
Shared Label Fac East	· · · · · · · · · · · · · · · · · · ·
Shared Label Font SansSerif Plain 12	· · · · · · · · · · · · · · · · · · ·
100%	

Use the Poke tool

Use the poke tool to change the values on the input pins

Notice that the value changed to a 1 and the wire lit up

000		Logisim: main of Untitled
👆 🕨 A 🛛 🖻		
🏸 🏟 🕼 🖸		· · · · · · · · · · · · · · · · · · ·
+ 1 # ×		
Untitled*		
🖸 main		
Wiring		
▶ 🔲 Gates		
Plexers		
Arithmetic		· · · · · · · · · · · · · · · · · · ·
Memory		
Input/Output	ıt	· · · · · · · · · · · · · · · · · · ·
Base		
P Buse		
Р	in	
Facing	East	
Output?	No	
Data Bits	1	
Three-state?	No	
Pull Rehavior	Unchanged	
Label	onenangea	
Label Location	West	
	West	
Label Font	SansSerit Plain 12	
100%		

Playing with AND

Here are the four possible combinations of our two inputs.

Adding two 1 bit numbers

We would like to build a circuit that can add two 1-bit numbers together

Build a truth table

We can express this as a **truth table**

А	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

A + B C S

Convert to equations

Now, we can extract the minterms and write two equations, one for each output

А	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

 $S = \overline{A}B + \overline{AB}$ $C = \overline{AB}$

Equation to gates

We will need two circuits to implement our two equations

$$S = \overline{AB} + \overline{AB}$$

2 AND gates,1 OR gate and2 NOT gates

... or 1 XOR

XOR stands for exclusive OR. It is true when exactly one of the inputs is true.

C = AB

1 AND gate

Build the circuit in Logisim

Create a circuit called half_adder

click the green plus sign

	\odot \bigcirc \bigcirc \bigcirc	Logisim: half_adder of Untitled
click here	👆 📐 A │ 🖻 🔍 D> D	
	🔑 🏟 🔝 🖺	
	+ t ‡ ×	
	🚞 Untitled*	
new circuit	🖸 main	
	half_adder	
will show	Wiring	· · · · · · · · · · · · · · · · · · ·
vviii Siiovv	Gates	· · · · · · · · · · · · · · · · · · ·
up here	 Arithmetic 	
	Memory	
	Input/Output	
	Circuit half addam	<u> </u>
Make sure that you are	Circuit: naif_adder	· · · · · · · · · · · · · · · · · · ·
now in the circuit it	Circuit Name nair_adder	· · · · · · · · · · · · · · · · · · ·
should have a	Shared Label Fac Fast	
magnifying glass on it	Shared Label Font SansSerif Plair	n 12
		·····
Double click to		
change circuits		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
	100%	

Put together the circuit

To change the orientation and add labels to the pins, use the attribute panel

Build the circuit in Logisim

Make sure to test your circuit

000		Logisim: half_adder of Untitled
👆 🕅 A 🛛 🖻	• ● ▷ D D	
🖉 ﴾ I⊵ 🖸 + t ↓ ×		
 Untitled* main half_adder Wiring Gates Plexers Arithmetic Memory Input/Output 	ıt	
P	Pin	γ
Facing Output? Data Bits Three-state? Pull Behavior Label Label Location Label Font	South No 1 No Unchanged B North SansSerif Plain 12	
100%		

What if the numbers have more than 1 bit?

If we add another bit to each, we have four times the number of possible equations

01	01	00	00	11	11	10	10
+ 01	+ 00	+ 01	+ 00	+ 01	+ 00	+ 01	+ 00
010	001	001	000	100	011	011	010
01	01	00	00	11	11	10	10
+ 11	+ 10	+ 11	+ 10	+ 11	+ 10	+ 11	+ 10
100	011	011	010	110	101	101	100

Looking at the second column

The second column is not the same -- it has to add three numbers instead of two

... and we already know how to add two 1 bit numbers together

Making a full adder

The Carry_out is just the OR of the two carries from the half adders because it will never be the case that both half adders produce one (check it yourself)

Make a full adder in Logisim

Create a new circuit and call it full_adder

Add two half_adders to the circuit

just click the half_adder once like it was a gate and then click in your

workspace

Add an OR gate

Hook it all together

Putting it all together

With a half adder an a couple of full adders, we can make something called **ripple-carry adder**

called that because any carries generated in the first column can ripple up to the last one

Build a 4-bit adder

- Double click on the main circuit
- Recreate the 4-bit adder from the previous page using three full adders and one half adder
- Add the 8 input pins and five output pins and label them AO, A1, A2, A3, B0, B1, B2, B3, S0, S1, S2, S3, carry_out
 - [note the wires may not connect in exactly the same place as shown in the diagram]
- Test, test, test