## Meet Logisim



## Add a gate

Click on the AND gate

Click on the workspace to place it


## Connect the gate to some pins

Add two input pins behind the gate

Add an output pin in front of the gate

Draw the wires in (click and drag -- if you look closely, you will see little dots where wires can connect)


## Use the Poke tool

Use the poke tool to
change the values on the
input pins

Notice that the value changed to a 1 and the wire lit up


## Playing with AND

Here are the four possible combinations of our two inputs.


## Adding two 1 bit numbers

We would like to build a circuit that can add two 1-bit numbers together

$$
\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
+1 \\
\hline 10 & +0 & +1 & +0 \\
\hline
\end{array}
$$



## Build a truth table

We can express this as a truth table

$$
\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
+1 \\
\hline 10 & +0 & +1 & +0 \\
\hline & & + & 0
\end{array}
$$

| $A$ |  | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
|  | S |  |  |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

$$
\begin{array}{r}
A \\
+B \\
\hline C S
\end{array}
$$

## Convert to equations

Now, we can extract the minterms and write two equations, one for each output

$$
\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
+1 \\
\hline 10 & +0 & +1 & +0 \\
\hline & & + & 0
\end{array}
$$

| A | B | C | S |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

$$
\begin{aligned}
& S=\bar{A} B+A \bar{B} \\
& C=A B
\end{aligned}
$$

## Equation to gates

We will need two circuits to implement our two equations

$$
S=\bar{A} B+A \bar{B}
$$

$$
C=A B
$$

2 AND gates,
1 OR gate and
2 NOT gates
... or 1 XOR

XOR stands for exclusive
OR. It is true when
exactly one of the inputs
is true.

## Build the circuit in Logisim

## Create a circuit called half_adder

 click the green plus sign

## Put together the circuit

To change the orientation and add labels to the pins, use the attribute panel


## Build the circuit in Logisim

Make sure to test your circuit


## What if the numbers have more than 1 bit?

If we add another bit to each, we have four times the number of possible equations

$$
\begin{array}{rrrrrrr}
01 & 01 & 00 & 00 & 11 & 11 & 10 \\
+01 \\
\hline 010 & +00 & +01 & +00 & +01 & +00 & +01 \\
+001 & \frac{+00}{000} & \frac{100}{011} & \frac{011}{010} \\
01 & 01 & 00 & 00 & 11 & 11 & 10 \\
+11 & +10 & +11 & +10 & +11 & +10 & +11 \\
\hline 100 & 011 & \frac{+10}{110} & \frac{+10}{101} & \frac{10}{100}
\end{array}
$$

## Looking at the second column

The second column is not the same -- it has to add three numbers instead of two

just looking at the second column
addition is
associative
... and we already know how to add two 1 bit numbers together

## Making a full adder

The Carry_out is just the OR of the two carries from the half adders because it will never be the case that both half adders produce one (check it yourself)


## Make a full adder in Logisim

Create a new circuit and call it full_adder
Add two half_adders to the circuit
just click the half_adder once like it was a gate and then click in your workspace

Add an OR gate
Hook it all together


## Putting it all together

With a half adder an a couple of full adders, we can make something called ripple-carry adder
called that because any carries generated in the first column can ripple up to the last one


## Build a 4-bit adder

- Double click on the main circuit
- Recreate the 4-bit adder from the previous page using three full adders and one half adder
- Add the 8 input pins and five output pins and label them AO, A1, A2, A3, B0, B1, B2, B3, S0, S1, S2, S3, carry_out
- [note - the wires may not connect in exactly the same place as shown in the diagram]
- Test, test, test

