Today

• Announcements
 • Thursday 12/7: Bring computer for evaluations
 • Final exam: self-scheduled; 2 sheets of notes allowed

• Computational Complexity
 • Big-O notation to describe # of operations
 • Example: complexity of search algorithms

• Sorting Algorithms
 • Elementary methods are $O(n^2)$
 • Divide-and-Conquer methods are $O(n \log n)$
Big-O notation

- Use a function to describe number of basic operations in terms of input size
- The function includes only the dominant terms, ignoring constants
- Example: list traversal is $O(n)$ for a list of n values
Binary Search

We can search faster if the list is sorted.

→ Compare middle element to the target, then refine search to one half of list.

| 2 | 5 | 8 | 11 | 15 | 16 | 21 | 24 | 29 | 41 | 45 | 58 | 71 | 85 | 92 | 95 |

Number of operations for a list of n elements: $O(\log_2 n)$ or $O(\log n)$
Binary Search: $O(\log n)$

Time required to execute the algorithm

Time increasing by decreasing increments

Length increasing by uniform increments

Length of list
Sorting

How to sort n values into increasing order?

15
53
6
32

6
15
32
53
Sorting Algorithms

Selection Sort \(\rightarrow O(n^2)\)
Find smallest value and swap into first position. Repeatedly select the smallest n-1 times.

Insertion Sort \(\rightarrow O(n^2)\)
Examine each element in turn, inserting it into its proper position among the already sorted values to the left.

Bubble Sort \(\rightarrow O(n^2)\)
Swap neighboring values if out of order (largest bubbles to end). Do this n-1 times.
Insertion Sort is $O(n^2)$
Merge Sort

If a list has only 1 item, then we’re done

Else:
 1. Split the list in half
 2. Recursive sort each half
 3. Merge the two sorted halves together (how?)
Merge Sort Complexity

- How many levels of splits?
- How many basic operations at each level?
 - Hint: how many basic operations to merge two lists of size n/2?
 - Hint: how many basic operations to merge four lists of size n/4?
- Merge sort complexity is $O(\log n) \times O(n) = O(n \log n)$
Summary

- **Computational complexity** describes how the time needed to execute an algorithm increases as its input size increases.

- **Big-O notation** summarizes an algorithm’s complexity in terms of its input size:
 - Linear search: $O(n)$
 - Selection sort: $O(n^2)$
 - Bubble sort: $O(n^2)$
 - Binary search: $O(\log n)$
 - Insertion sort: $O(n^2)$
 - Merge sort: $O(n \log n)$