Lecture 23: Sorting and Complexity

CSCI 101
Spring 2018
Today

- Announcements
 - Thursday: Bring computer for evaluations
 - Final exam: self-scheduled; 2 sheets of notes allowed

- Computational Complexity
 - Big-O notation to describe # of operations
 - Last week: complexity of search algorithms

- Sorting Algorithms
 - Elementary methods are $O(n^2)$
 - Divide-and-Conquer methods are $O(n \log n)$
Big-O notation

- Use a function to describe number of basic operations in terms of input size
- The function includes only the dominant terms, ignoring constants
- Example: list traversal is $O(n)$ for a list of n values
Binary Search

We can search faster if the list is sorted

→ Compare middle element to the target, then refine search to one half of list

| 2 | 5 | 8 | 11 | 15 | 16 | 21 | 24 | 29 | 41 | 45 | 58 | 71 | 85 | 92 | 95 |

Number of operations for a list of n elements: $O(\log_2 n)$ or $O(\log n)$
Binary Search: $O(\log n)$
Sorting

How to sort n values into increasing order?

\[
\begin{array}{c}
15 \\
53 \\
6 \\
32 \\
\end{array}
\rightarrow
\begin{array}{c}
6 \\
15 \\
32 \\
53 \\
\end{array}
\]
Sorting Algorithms

Selection Sort $\rightarrow O(n^2)$
Find smallest value and swap into first position. Repeatedly select the smallest n-1 times.

Insertion Sort $\rightarrow O(n^2)$
Examine each element in turn, inserting it into its proper position among the already sorted values to the left.

Bubble Sort $\rightarrow O(n^2)$
Swap neighboring values if out of order (largest bubbles to end). Do this n-1 times.
Insertion Sort is $O(n^2)$
Merge Sort

If a list has only 1 item, then we’re done

Else:
1. Split the list in half
2. Recursive sort each half
3. Merge the two sorted halves together (how?)
Merge Sort Complexity

- How many levels of splits?
- How many basic operations at each level?
 - Hint: how many basic operations to merge two lists of size $n/2$?
 - Hint: how many basic operations to merge four lists of size $n/4$?

- Merge sort complexity is $O(\log n) \times O(n) = O(n \log n)$
Summary

- **Computational complexity** describes how the time needed to execute an algorithm increases as its input size increases.
- **Big-O notation** summarizes an algorithm’s complexity in terms of its input size.
 - Linear search: $O(n)$
 - Selection sort: $O(n^2)$
 - Bubble sort: $O(n^2)$
 - Binary search: $O(\log n)$
 - Insertion sort: $O(n^2)$
 - Merge sort: $O(n \log n)$