
Lecture 22:
Complexity

CSCI 101
Spring 2018

Today
l Announcements

l Next week: Course response forms. Bring computer.
l Final exam: self-scheduled; 2 sheets of notes allowed

l Computational Complexity
l Big-O notation to describe # of operations
l Example: complexity of search algorithms

Time and space

Algorithm choice will determine the
resources used at runtime.

Key resources:
l Time (CPU time)
l Space (memory)

Computational Complexity

A basic operation requires one time unit
l adding two values
l assigning to a variable
l comparing two values
l accessing a list element

How many basic operations does a given
algorithm perform?

Traversing a List

Code to print all values in a list:
n = len(t)
i = 0
while i < n:

print(t[i],end='')
i += 1

How many operations does this perform?
c·n operations for list of n elements

a constant, eg, 5

Big-O notation

l Use a function to describe number of
basic operations in terms of input size

l The function includes only the dominant
terms, ignoring constants

l Example: list traversal is O(n) for a list
of n values

Linear Search
Find a value in a list:

n = len(t)
i = 0
while i < n:

if t[i] == target:
return i

i += 1
return -1

Number of operations for a list of n
elements: O(n)

Binary Search

We can search faster if the list is sorted

Compare middle element to the
target, then refine search to one half of list

Number of operations for a list of n
elements: O(log2n) or O(log n)

2 5 8 11 15 16 21 24 29 41 45 58 71 85 92 95

Binary Search: O(log n)

Order of Growth

Problem Size (n)

R
u

n
n

in
g

 T
im

e O(2^n)

O(n^2)

O(n log n)

O(n)

O(log n)

O(1)

Bad. Very bad.

Algorithmic Analysis
If time needed… then we say… Examples

grows proportionally with
the input size

the algorithm runs in
O(n) or linear time

Linear search
Compute sum of list

grows only incrementally as
the input size doubles

the algorithm runs in
O(log n) or logarithmic time

Binary search,
Fast exponentiation

doubles with a unit increment
to the input size

the algorithm runs in
O(2n) or exponential time

Recursive Fibonacci
Towers of Hanoi

doesn't change with the
input size

the algorithm runs in
O(1) or constant time

Finding max of
sorted list

grows quadratically with
the input size

the algorithm runs in
O(n2) or quadratic
time

Insertion, selection,
and bubble sorts

Algorithms We Prefer
Polynomial time algorithms are desirable

l O(1) [constant]
l O(log n) [logarithmic]
l O(n) [linear]
l O(n log n)
l O(n2) [quadratic]
l O(n3) [cubic]

Non-polynomial time algorithms are undesirable
l O(2n) [exponential]
l O(n!) [factorial]

