Today

- Announcements
 - Next week: Course response forms. Bring computer.
 - Final exam: self-scheduled; 2 sheets of notes allowed

- Computational Complexity
 - Big-O notation to describe # of operations
 - Example: complexity of search algorithms
Time and space

Algorithm choice will determine the resources used at runtime.

Key resources:
- **Time** (CPU time)
- **Space** (memory)
A *basic operation* requires one time unit
- adding two values
- assigning to a variable
- comparing two values
- accessing a list element

How many *basic operations* does a given algorithm perform?
Traversing a List

Code to print all values in a list:

```python
n = len(t)
i = 0
while i < n:
    print(t[i], end='')
i += 1
```

How many operations does this perform?

→ $c \cdot n$ operations for list of n elements

↑ a constant, eg, 5
Big-O notation

- Use a function to describe number of basic operations in terms of input size.
- The function includes only the dominant terms, ignoring constants.
- Example: list traversal is $O(n)$ for a list of n values.
Linear Search

Find a value in a list:

\[
\begin{align*}
n &= \text{len}(t) \\
i &= 0 \\
\text{while } i < n: \\
\quad &\text{if } t[i] == \text{target}: \\
\quad\quad &\text{return } i \\
\quad &i += 1 \\
\text{return } -1
\end{align*}
\]

Number of operations for a list of \(n \) elements: \(O(n) \)
Binary Search

We can search faster if the list is sorted

→ Compare middle element to the target, then refine search to one half of list

2 5 8 11 15 16 21 24 29 41 45 58 71 85 92 95

Number of operations for a list of \(n \) elements: \(O(\log_2 n) \) or \(O(\log n) \)
Binary Search: $O(\log n)$

- Time required to execute the algorithm
- Time increasing by decreasing increments
- Length increasing by uniform increments
- Length of list
Order of Growth

<table>
<thead>
<tr>
<th>Problem Size (n)</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2^n)</td>
<td>Bad. Very bad.</td>
</tr>
<tr>
<td>O(n^2)</td>
<td></td>
</tr>
<tr>
<td>O(n log n)</td>
<td></td>
</tr>
<tr>
<td>O(n)</td>
<td></td>
</tr>
<tr>
<td>O(log n)</td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td></td>
</tr>
</tbody>
</table>

Graph showing running time vs. problem size with comment: Bad. Very bad.
Algorithmic Analysis

<table>
<thead>
<tr>
<th>If time needed…</th>
<th>then we say…</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>grows proportionally with the input size</td>
<td>the algorithm runs in O(n) or linear time</td>
<td>Linear search</td>
</tr>
<tr>
<td>grows only incrementally as the input size doubles</td>
<td>the algorithm runs in O(log n) or logarithmic time</td>
<td>Compute sum of list</td>
</tr>
<tr>
<td>doubles with a unit increment to the input size</td>
<td>the algorithm runs in O(2^n) or exponential time</td>
<td>Binary search, Fast exponentiation</td>
</tr>
<tr>
<td>doesn't change with the input size</td>
<td>the algorithm runs in O(1) or constant time</td>
<td>Recursive Fibonacci, Towers of Hanoi</td>
</tr>
<tr>
<td>grows quadratically with the input size</td>
<td>the algorithm runs in O(n^2) or quadratic time</td>
<td>Finding max of sorted list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insertion, selection, and bubble sorts</td>
</tr>
</tbody>
</table>
Algorithms We Prefer

Polynomial time algorithms are desirable
- $O(1)$ [constant]
- $O(\log n)$ [logarithmic]
- $O(n)$ [linear]
- $O(n \log n)$
- $O(n^2)$ [quadratic]
- $O(n^3)$ [cubic]

Non-polynomial time algorithms are undesirable
- $O(2^n)$ [exponential]
- $O(n!)$ [factorial]