Digital Circuits MI

Today

- Digital Circuits
- Logic gates: AND, OR, NOT
- Truth tables
- Transistors
- Logic circuits: XOR, adder, flip-flop
- Reading: CS for All section 4.3

Computer board

Computer chip

Chips, Circuits, and Gates

- Chip - integrated circuit of many transistors made using aluminum or copper and imprinted on a silicon base

- Gate - a low-level construction that produces a binary output based on one or more binary inputs (e.g., AND, OR, NOT)
- Circuit - some combination of gates (made of transistors)

Digital Circuits

-Why binary?

- On lowest level, wires carry voltage
- 2 possible states on each wire:
$0 \mathrm{~V} / 5 \mathrm{~V} \quad 0 / 1$ off/on false / true

Inverter

Can switch a binary signal from 0 to 1 and vice versa

$$
Y=\overline{\mathrm{A}}
$$

AND and OR gates

Combine 2 binary signals to form a single output

OR

A	B	$\mathrm{A} \bullet \mathrm{B}$	$\mathrm{A}+\mathrm{B}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

NAND, NOR, and XOR Gates

- Build a circuit for $\overline{(\mathrm{A} \cdot \mathrm{B})}$
- Build a circuit for $\overline{(A+B)}$

- Build a circuit for XOR: $(\mathrm{A} \bullet \overline{\mathrm{B}})+(\overline{\mathrm{A}} \bullet \mathrm{B})$

\longleftarrow Sum of Products
Equation

NAND, NOR, and XOR Gates

- Build a circuit for $\overline{(\mathrm{A} \bullet \mathrm{B})}$

NAND
- Build a circuit for $\overline{(A+B)}$

NOR

- Build a circuit for $(\mathrm{A} \bullet \overline{\mathrm{B}})+(\overline{\mathrm{A}} \bullet \mathrm{B})$

Summary: Basic Logic Gates

AND

NAND

OR

NOR

NOT

XOR

Transistors

- Transistors work like on/off switches for electricity
- Logic gates can be built with transistors

Transistors

- Transistors work like on/off switches for electricity
- Logic gates can be built with transistors

What Transistors Do

- Work like faucet
- Constant supply of available water
- When valve is open, water can flow through
- Can determine if water is flowing (1) or not (0) with sensor below spout
- Transistors work with electricity instead of water and semiconductor materials rather than valves

Binary Arithmetic

There are 10 types of people in the world: those who know binary, and those who don't.

The Half-Adder Circuit

- How can we add two 1-bit binary numbers with gates?

The Half-Adder Circuit

- How can we add two 1-bit binary numbers with gates?

The Full-Adder Circuit

- What if there is a carry bit input from a previous addition?

The Full-Adder Circuit

- What if there is a carry bit input from a previous addition?
(Yet another level of abstraction)

Four-Bit Adder Circuit

- How can we add two 4-bit numbers?

Current CPUs are 32-bit or 64-bit (can handle that many bits of data at once)

Designing Memory Circuitry

- How can we design circuitry to store values over time?

- Implementation using our basic gates:

