
 
CSCI 101 Midterm Sample Questions 
 
Note: you may bring one 8.5"x11" double-sided sheet of notes for your use during the exam (hand- 
written or typed). Otherwise, no notes, computers, calculators, phones or other aids are allowed. 

 
 

1. Short answer 
 

(a) The following function is supposed to test whether a given word contains a given letter. It uses a 
recursive strategy.  Unfortunately, there are three different problems with this function.  Identify these 
problems and rewrite the corrected function. 

 
def contains(word, letter): 
    if word[0] == letter: 
        return True 
    elif len(word) = 0: 
        return False 
    else: 
        contains(word[1:], letter) 

 
 error 1:         
 
 error 2:         
 
 error 3:         
 
 

(b) What output do the following lines of Python produce?  
 

x = 10 
y = x * 3 + 5 
x = 2 * y – 5 
print("x=", x) 
print("y=", y) 
 

(c) Describe what makes a problem suitable for a recursive solution. What are the necessary components 
or characteristics of a recursive solution? 

 
  



 
2. True or False 

 
For each of the statements below state whether they are true or false. No justification required.  
 
  If  s='eat more kale'  then s[1] == s[-1] would give  True. 
 
  Given an even-length string s, s[(len(s)//2):] would give the last half of the string. 
 
  7/2 + 7//2 + 7%2  evaluates to 7.5 
 
  Given the function below, if we were to type  print(identity(3))  and hit enter in 

 the Python console, we would only see a single 3 displayed.  
 
def identity(num): 
    print(num) 
    return num 

 
  The function  rundown(n) produces the even numbers from n down to 2. 

 
def rundown(n): 
    if n>1: 

  print(n) 
  rundown(n//2) 

 
 

3. Understanding code 
 

(a) Consider the following Python program.  What output will this code produce when run? 
 

def mystery1(a, b):      
    return a+b   
 
def mystery2(a, b):      
    if a > b:          
        return a      
    else:          
        return b       
 
def mystery3(a, b):      
    if a < b:          
        print(a)         
        a = a + 2          
        mystery3(a, b)   
 
y = mystery1(26, 8)  
print(y)   
 
y = mystery2(26, 8)  
print(y)   
 
mystery3(16, 22)   

  



 
(b) Consider the following function definition. 

 
def mystery(side):      
    if side > 0:          
        turtle.forward(side)          
        turtle.left(90)          
        mystery(side-50) 

 
Draw what the function above would draw on the screen if run with command  mystery(250). 
Assume the turtle initially is at the center of the window facing right. You can assume the width and 
height of the window are about 600 pixels. Indicate the final position and orientation of the turtle 
with a small triangle.  
 
 

4. Writing functions 
 

(a) Complete the Python program midterm1.py.  The program asks the user for input, then calls functions 
test1 and test2 and outputs their results. You should define the (non-recursive) functions test1 and 
test2 so that the provided main program (at the bottom of the box below) will work without any 
modification. Do not use any pre-defined mathematical functions, rather simply use multiplication, 
addition, conditionals, etc, to complete the code. Here is an example of how your program should work 
(the user’s input is the -7 in bold). Note: The function calls and input/output are done for you; you do 
not need to rewrite the main program, just write the function definitions for test1() and test2(). 

 
>>> runfile('midterm1.py') 
Enter a number: -7 
square of -7 is 49 
absolute value of -7 is 7 
 
 
# midterm1.py 
 
# define functions test1 and test2 here: 
 
 
 
 
 
 
 
 
 
 
 
# main program that calls test1 and test2: 
 
x = int(input("Enter a number: "))  
print("square of", x, "is", test1(x))  
print("absolute value of", x, "is", test2(x)) 
 

 



 
 

(b) Write a recursive function called every_other_letter that takes a string parameter as input and 
returns a string that contains every other letter in the string starting with the first letter. For example:  
>>> every_other_letter('banana') 
'bnn' 
>>> every_other_letter('computer') 
'cmue' 
>>> every_other_letter('kale') 
'kl' 
>>> every_other_letter('a') 
'a' 
 
[Note: a concise correct answer can be given in just 5 lines of code. Just give the function definition, 
not the main program, and do not use print() or input().] 

 
 

5. Lists 
 

a) Write a Python function named indexMin that takes a list of integers as a parameter and returns 
the index of the smallest integer in the list. (If there are duplicate list entries your function should 
return the index of the first occurrence of the smallest value.) You may assume that there is at least 
one integer in the list. Example: indexMin([34, 25, 67, 12, 90, 12]) should return 3.  
 

b) What output is produced by the following code? 
 

def mystery(a): 
    print(a) 
    for i in range(1, len(a)): 
        a[i] += a[i-1] 
        print(a) 
 
mystery([8, 5, 0, -7, 4]) 

 
 

6. Loops  
 

Rewrite the following function to use a while loop instead of a for loop. 
 

def sumOfList(t):  
   """ Returns the sum of all values in list t."""  
   sum = 0  
   for v in t:  
      sum += v   
   return sum 
 

7. Write a recursive function countEven(t) in Python that takes list t as an input parameter and returns 
the number of even numbers in t. Example: countEvens([2,5,7,6,4]) should return 3. 

  



 
8. The explode() function takes in a string s as a parameter and returns a list of characters in s. For 

example, explode('fantastic') would return ['f','a','n','t','a','s','t','i','c']. A recursive version is below. 
Rewrite this using a for loop instead.  

 
def explode(s): 
    """Returns list of characters in string s.""" 
    if len(s) == 0: 
        return [] 
    else: 
        return explode(s[:-1]) + [s[-1]] 
 
 

9. Consider the following mystery function. 
 
def mystery(t, x): 
    for v in t: 
        if v == x: 
            return True 
    return False 
 

a) What values would be returned from the calls  
i. mystery(['a','b','c'],'d')? 
ii. mystery(['a','b','c'],'c')? 

 

b) Describe in English what the mystery function does.  
 
 

10. Without looking at the posted code, write the function Koch(L, level) to draw the recursive Koch curve 
as shown below.  (Recall that if level is 0, the turtle should simply go forward by L; in all other cases, 
the turtle should end up at the same position, distance L to the right of where it started.) 

 
 
 


