
	
CSCI	101	Midterm	Sample	Questions	
	
Note:	you	may	bring	one	8.5"x11"	double-sided	sheet	of	notes	for	your	use	during	the	exam	(hand-	
written	or	typed).	Otherwise,	no	notes,	computers,	calculators,	phones	or	other	aids	are	allowed.	

	
	

1. Short	answer	
	

(a) The	following	function	is	supposed	to	test	whether	a	given	word	contains	a	given	letter.	It	uses	a	
recursive	strategy.		Unfortunately,	there	are	three	different	problems	with	this	function.		Identify	these	
problems	and	rewrite	the	corrected	function.	

	
def contains(word, letter):
 if word[0] == letter:
 return True
 elif len(word) = 0:
 return False
 else:
 contains(word[1:], letter)

	
	 error	1:		 	 	 	 	 	 	 	
	
	 error	2:		 	 	 	 	 	 	 	
	
	 error	3:		 	 	 	 	 	 	 	
	
	

(b) What	output	do	the	following	lines	of	Python	produce?		
	

x = 10
y = x * 3 + 5
x = 2 * y – 5
print("x=", x)
print("y=", y)

(c) Describe	what	makes	a	problem	suitable	for	a	recursive	solution.	What	are	the	necessary	components	
or	characteristics	of	a	recursive	solution?	

	
	 	

def contains(word, letter):
 if len(word) == 0:
 return False
 elif word[0] == letter:
 return True
 else:
 return contains(word[1:], letter)

order of base cases needs to be switched

if len(word) = 0 needs == instead of =

last line is missing the word ‘return’

x = 65
y = 35

A problem might be suitable for a recursive solution if the solution to the entire problem can
be expressed in terms of the solution to a smaller problem. For example, N! = N * (N-1)!
The two necessary components of a recursive solution are (1) a base case that solves a
trivial version of the problem, and (2) a recursive case that solves a smaller version of the
problem while making progress towards a base case.

	
2. True	or	False	

	
For	each	of	the	statements	below	state	whether	they	are	true	or	false.	No	justification	required.		
	
	 	If		s='eat more kale'		then	s[1] == s[-1]	would	give		True.	
	
	 	Given	an	even-length	string	s,	s[(len(s)//2):]	would	give	the	last	half	of	the	string.	
	
	 	7/2 + 7//2 + 7%2		evaluates	to	7.5	
	
	 	Given	the	function	below,	if	we	were	to	type		print(identity(3))		and	hit	enter	in	

	the	Python	console,	we	would	only	see	3	displayed.		
	
def identity(num):
 print(num)
 return num	

	
	 	The	function		rundown(n) produces	the	even	numbers	from	n	down	to	2.	

def rundown(n):
 if n>1:

 print(n)
 rundown(n//2)

	

3. Understanding	code	
	

(a) Consider	the	following	Python	program.		What	output	will	this	code	produce	when	run?	
	

def mystery1(a, b):
 return a+b

def mystery2(a, b):
 if a > b:
 return a
 else:
 return b

def mystery3(a, b):
 if a < b:
 print(a)
 a = a + 2
 mystery3(a, b)

y = mystery1(26, 8)
print(y)

y = mystery2(26, 8)
print(y)

mystery3(16, 22)

False

True

True

False

False

34
26
16
18
20

(b) Consider	the	following	function	definition.	

	
def mystery(side):
 if side > 0:
 turtle.forward(side)
 turtle.left(90)
 mystery(side-50)
	
Draw	what	the	function	above	would	draw	on	the	screen	if	run	with	command		mystery(250).	
Assume	the	turtle	initially	is	at	the	center	of	the	window	facing	right.	You	can	assume	the	width	and	
height	of	the	window	are	about	600	pixels.	Indicate	the	final	position	and	orientation	of	the	turtle	
with	a	small	triangle.		

4. Writing	functions	
	

(a) Complete	the	Python	program	midterm1.py.		The	program	asks	the	user	for	input,	then	calls	functions	
test1	and	test2	and	outputs	their	results.	You	should	define	the	(non-recursive)	functions	test1	and	
test2	so	that	the	provided	main	program	(at	the	bottom	of	the	box	below)	will	work	without	any	
modification.	Do	not	use	any	pre-defined	mathematical	functions,	rather	simply	use	multiplication,	
addition,	conditionals,	etc,	to	complete	the	code.	Here	is	an	example	of	how	your	program	should	work	
(the	user’s	input	is	the	-7	in	bold).	Note:	The	function	calls	and	input/output	are	done	for	you;	you	do	
not	need	to	rewrite	the	main	program,	just	write	the	function	definitions	for	test1()	and	test2().	

	
>>> runfile('midterm1.py')
Enter a number: -7
square of -7 is 49
absolute value of -7 is 7

midterm1.py

define functions test1 and test2 here:

main program that calls test1 and test2:

x = int(input("Enter a number: "))
print("square of", x, "is", test1(x))
print("absolute value of", x, "is", test2(x))

def test1(x):
 return x * x

def test2(x):
 if x < 0:
 return -x
 else:
 return x

(b) Write a recursive function called every_other_letter that takes a string parameter as input and
returns a string that contains every other letter in the string starting with the first letter. For example:
>>> every_other_letter('banana')
'bnn'
>>> every_other_letter('computer')
'cmue'
>>> every_other_letter('kale')
'kl'
>>> every_other_letter('a')
'a'

[Note: a concise correct answer can be given in just 5 lines of code. Just give the function definition,
not the main program, and do not use print() or input().]

5. Lists

a) Write a Python function named indexMin that takes a list of integers as a parameter and returns
the index of the smallest integer in the list. (If there are duplicate list entries your function should
return the index of the first occurrence of the smallest value.) You may assume that there is at least
one integer in the list. Example: indexMin([34, 25, 67, 12, 90, 12]) should return 3.

b) What output is produced by the following code?

def mystery(a):
 print(a)
 for i in range(1, len(a)):
 a[i] += a[i-1]
 print(a)

mystery([8, 5, 0, -7, 4])

6. Loops

Rewrite the following function to use a while loop instead of a for loop.

def sumOfList(t):
 """ Returns the sum of all values in list t."""
 sum = 0
 for v in t:
 sum += v
 return sum

7. Write a recursive function countEven(t) in Python that takes list t as an input parameter and returns
the number of even numbers in t. Example: countEvens([2,5,7,6,4]) should return 3.

Briggs, Amy J.
def indexMin(t):

 minIndex = 0

 for i in range(1,len(t)):

 if t[i] < t[minIndex]:

 minIndex = i

 return minIndex

	[8, 5, 0, -7, 4]

[8, 13, 0, -7, 4]

[8, 13, 13, -7, 4]

[8, 13, 13, 6, 4]

[8, 13, 13, 6, 10]

Briggs, Amy J.
	def sumOfList(t):
 sum = 0

 i = 0

 while i < len(t):

 sum += t[i]

 i += 1

 return sum

Briggs, Amy J.
def countEven(t):

 if len(t) == 0:

 return 0

 else:

 return (((t[0] % 2) + 1) % 2) + countEven(t[1:])

def every_other_letter(s):
 if len(s) < 2:
 return s
 else:
 return s[0] + every_other_letter(s[2:])

8. The explode() function takes in a string s as a parameter and returns a list of characters in s. For

example, explode('fantastic') would return ['f','a','n','t','a','s','t','i','c']. A recursive version is below.
Rewrite this using a for loop instead.

def explode(s):
 """Returns list of characters in string s."""
 if len(s) == 0:
 return []
 else:
 return explode(s[:-1]) + [s[-1]]

9. Consider the following mystery function.

def mystery(t, x):
 for v in t:
 if v == x:
 return True
 return False

a) What values would be returned from the calls
i. mystery(['a','b','c'],'d')?
ii. mystery(['a','b','c'],'c')?

b) Describe in English what the mystery function does.

10. Without looking at the posted code, write the function Koch(L, level) to draw the recursive Koch curve
as shown below. (Recall that if level is 0, the turtle should simply go forward by L; in all other cases,
the turtle should end up at the same position, distance L to the right of where it started.)

Briggs, Amy J.
def explode(s):

 t = []

 for c in s:

 t += [c]

 return t

Briggs, Amy J.
mystery(['a','b','c'],'d'): False
(because 'd' is not in the input list)

	mystery(['a','b','c'],'c'): True
(because 'c' appears in the input list)

	The mystery function takes as input a list and a value,
and determines whether the value appears in the list.

Briggs, Amy J.
def drawKoch(length, levels):

 if levels == 0:

 turtle.forward(length)

 else:

 drawKoch(length/3, levels-1)

 turtle.left(60)

 drawKoch(length/3, levels-1)

 turtle.right(120)

 drawKoch(length/3, levels-1)

 turtle.left(60)

 drawKoch(length/3, levels-1)

