
CS211 - Data Structures
Spring 2013

Professor Christopher Andrews

Sorting Algorithms

 Insertion sort

 Insertion sort works by conceptually breaking our list into two pieces: the first piece is sorted, the

second is not
 We walk through the unsorted items and one by one insert them into the right location in the sorted

list.
 to save ourselves some effort in the insertion, we look for the right location by walking through the

sorted list form the end until we find the spot where our value should be placed
 as we visit each value, we copy it one slot to the right
 as a result, we have made a slot for our value and extended the length of the sorted list by one

// i represents the boundary between the sorted and unsorted list
for i = 1 to length-1
! item = L[i]
! j = i-1
! // j is our cursor as we walk backwards through the sorted list
! while (j >= 0 and L[j] > item)
! ! L[j+1] = L[j]
! ! j--
! // we have found our space for the item
! L[j+1] = item

 CS211 Sorting Algorithms 1

Mergesort

 Mergesort is a fairly basic application of divide and conquer
 split the list in half
 sort the two halves
 merge the two halves together by interleaving them in the correct order

// this sorts the portion of the list that starts at index p and ends at
index r (inclusive)
mergesort(A, p, r)
! // if p is not less than r, there is no list to sort
! if (p < r)
! ! m = floor((p+r)/2)
! ! mergesort(A, p, m)
! ! mergesort(A,m+1, r)
! ! merge(A, p, m, r)

// this is where the real work happens. This merges the two sublists of list
A that go from p to m and m+1 to r inclusive. It is assumed that the two sub
lists are sorted and at the end, the sublist from p to r will be sorted
merge(A, p, m, r)
! // merge requires a backup list to copy values into for the merging
! new B[]
! // b is the next open index in temporary list B
! b = 0
! // i is the index of the smallest value in the left sublist that hasn’t
been merged!
! i = m
! // j is the index of the smallest value in the right sublist that
hasn’t been merged
! j = q+1

! // until one of the two sublists runs out of values, pick the smallest
of the two next available values and copy it to B
! while (i <= m AND j <= r)
! ! if (A[i] <= A[j])
! ! ! B[b++] = A[i]
! ! ! i++
! ! else
! ! ! B[b++] = A[j]
! ! ! j++
!
! // if the left sublist is not exhausted, copy it all to B
! for (;i<=m;i++)
! ! B[b++] =A[i]

! // if the right sublist is not exhausted, copy it all to B
! for (;j<r; j++)
! ! B[b++] = A[j]

! // copy the sorted sublist out of B and back into A
! for (i = 0; i < b; i++)
! ! A[p+i] = B[i]

 CS211 Sorting Algorithms 2

Quicksort
 we partition the list into two halves, based on a pivot value
 everything in one half is less than the pivot, everything in the other is greater (technically, one of

those needs to actually include the pivot value if it occurs multiple times in the data
 when then sort the two halves
 we are guaranteed that since the list is partitioned that if the two halves are sorted, the whole list will

be sorted when we stick them back together
 the partition step is the important part
 we consider our list to really be three lists — one with the values less then the pivot, one with

values greater, and one with items we haven’t looked at yet
 we then look at the first item of the unpartitioned list
 if it is larger, leave it where it is and move to the next value (basically puts this at the end of

the “larger” list)
 if it is smaller, swap it with the head of the larger list, and then increase the size of the

“smaller” list
 when we are done, we move the pivot value to the head of the “larger than” list and return this

index

// this sorts the portion of the list that starts at index p and ends at
index r (inclusive)
quicksort(A, p, r){
! // if p is not less than r, there is no list to sort
! if p < r
! ! q = partition(A, p, r)
! ! quicksort(A, p, q-1)
! ! quicksort(A, q+1, r)

// This partitions the sublist from index p to index r inclusive
// it returns the index of a “pivot” value, such that all values to the
// left of it are less than it and all values to the right are greater than
// or equal to it
partition(A, p,r)
! // pick the last value in the sublist to be our pivot
! pivot = A[r]
! // split indicates the first value not in the “less than” list
! split = p
! // partition the list
! for i=p to i=r-1
! ! if A[i] < pivot
! ! ! swap(split, i)
! ! ! split++
! // move the pivot to the correct index and return that position
! swap(split, r)
! return split

 CS211 Sorting Algorithms 3

