CS 312 Software Development

Introduction to React: Components

Frameworks

ANGULAR

- Event based (e.g., Backbone, Vue)
 - Changing the data triggers an event
 - · Views register event handlers
- Two-way binding (e.g. Angular)
 - Assigning to a value propagates to dependent components and vice versa

- Efficient re-rendering (e.g. React)
 - Re-render all subcomponents when data changes

CS 312 Software Development

Introduction to React: Fundamentals

Philosophy of React

- There is a single source of truth (the state)
- Render the UI as it should appear for any given state of the application
- Update the state as a result of user actions
- Repeat (i.e., re-render the UI with the new state)

Thinking in React

- 1. Break the UI into a component hierarchy
- 2. Build a static version in React
- 3. Identify the minimal (but complete) representation of state
- 4. Identify where your state should live
- 5. Add "inverse" data flow (data flows down, callbacks flow up)

Color picker example

red:
green: 151
green: 187
blue: 214

state: {red:151,
green:187,
blue:214}

LabeledSlider

LabeledSlider

labeledSlider

LabeledSlider

LabeledSlider

https://reactjs.org/docs/thinking-in-react.html

CS 312 Software Development

Introduction to React: Writing code

ColorPicker

ColorPicker

State with React Hooks (useState)

const [currentValue, setter] = useState(initial value)

destructuring assignment

ColorPicker

ColorPicker

ColorPicker

Passing props

LabeledSlider

LabeledSlider

Controlled components

Form elements (like input) are controlled

We exploit React's re-render loop to get interaction while maintaining a single source of truth

LabeledSlider

Props

single destructured argument "props"