CS 312 Software Development

Introduction to React: Components

Component based web design

CS 312 Software Development

—

+ Home
« Course Info

Lectures
+ Lecture 00 - Intro

+ Lecture 01- JS
+ Lecture 02 - Tools
Assignments
Practicals

Project

Resources

CS 312 - Course Information

Professor Christopher Andrews

Office 215 75 Shannon Street

Email candrews@middlebury.edu

Office hours M 1:30p-3:30p, Th 2:30p-4:30p, F 1:30p-2:30p or by appointment

Website http:/{go.middlebury.edu/cs312

Class meetings Rm 224 75SHS -- Section A: TTh 9:35a-10:50a, Section B: TTh 11:10a-12:25a

Course Objectives

At the completion of the course you should be able to:

Describe and employ modern methodologies for managing SW development, specifically Agile and Scrum
Use tools and services that support those processes, such as version control, GitHub, continuous
ntegration, etc.

Describe and employ SW development umup\us patterns and best-practices, such as design patterns,
SOLID, test-driven ucvcmpmcm (TDD!

4. Describe, evaluate and employ !cc"hmogwcs for full stack web development and single page web
applications (SPAs)

5. Complete a large software development project as part of a team

Class deliverables

There will be four different kinds of deliverables in this class:

Practical exercises: Throughout the semester, there will be a collection of in-class exerci where you will

work through examples yourselves. The purpose of these s to give you practice working through concrete
examples of the things you see in lecture

Assignments: In the first half the semester there will also be a collection of homework assignments. These
will be longer, more involved, and wil require more thought ans synthesis on your part. These are designed
10 both deepen your understanding and allow you to demonstrate your understanding of the material.

Weekly assessments: Every will do a short assessment exercise. These will primarily consist of
short answer questions about the material covered up to that point in the class. Eacl ked as
belonging to one of the three major topic areas of the class: "skills" (technical implementation, e.g., writing a
short function or debugging an implementation), "concepts” (more theoretical questions, e.g., demonstrating
knowledge of different patterns, describe pros and cons of different kinds of databases), and "process"
(questions about the software development process, e.g., writing user stories, describing the pros and cons
of different kinds of testing)

Project: The focus of this class is the final project. In the second half the semester you will undertake a large
software development project as part of team of approximately 6 students (depending on class size) You m
need to be in frequent contact with your group and actively contributing as a software developer each we

Component based web design

Listing for individuallbooks

v Guide
2000

small item view

Entertaiment Weekly

%0

Cooks ustated

Need help?

Vit th hel sectionorcontactus

Recommended magazine subscriptions for you

Scentfc Amerian

95 3495

Deals in magazine subscriptions

Biteromos|
€ Gardens
B o

ardens

$500

Knitted Animal Friends: Over 40 Knitting Patterns for Adorable Animal
Dolis, Their Clothes and Accessories.
by Louise Crowther | Sod by: Amazon.com Senvices LLC | Dec', 2020

a5

Kindie Edition

194100
Avatbie nstantly

By cow it 1-Cick®

Cold Red (FBI Joint Task Force Series Book 2)
Book 2of 5 Bl Jint Task Forc Seres | by Fona Quinn | Sold by: Amazon com
Services LLC

101
Kindle Edtion

Freewith KindlsUnlimited membership
Avlablenstanty

org199t0by

o previous | 1] 2 || Next -

Page 109

4
>
smithsonin The Newvorker Martha stewart Lving
Fage1ofs
REALSWPLE’, FOODEWY i
>

restsipie Food & Wine The New Yorker

" $s00 $500

| Pager

multi-item carousel

7

Color picker example

’ -,

Frameworks

B BACKBONEJS

Vue.js

Y NGULAR

» Event based (e.g., Backbone, Vue)
* Changing the data triggers an event
» Views register event handlers

* Two-way binding (e.g. Angular)
» Assigning to a value propagates to
dependent components and vice
versa

« Efficient re-rendering (e.g. React)
* Re-render all subcomponents when
data changes

Model View Controller (MVC)

User

action Update

Update Notify

CS 312 Software Development

Introduction to React: Fundamentals

Philosophy of React

There is a single source of truth (the state)

Render the Ul as it should appear for any given state of
the application

Update the state as a result of user actions
Repeat (i.e., re-render the Ul with the new state)

- s L
-
P s

Red: =———O————110
Green; = =—————==205/
Blue: =142

React mechanics

serState Dirty

Batched updates

Dirty Re-rendered

Sub-tree re-rendering

https://calendar.perfplanet.com/2013/diff/

Thinking in React

1. Break the Ul into a component hierarchy
2. Build a static version in React

3. Identify the minimal (but complete) representation of
state

4. Identify where your state should live

5. Add “inverse” data flow (data flows down, callbacks flow
up)

https://reactjs.org/docs/thinking-in-react.html

Color picker example

red: == [5]

green: ————{ == 187

blue: =TT 214

state: {red:151,
green:187,
blue:214}

ColorPicker

LabeledSlider LabeledSlider LabeledSlider

red: =151 green: =l 187 blue: =L/ 214

Color picker example

red: = 151
state: {red:151, green; {187
green:187, blue: = 214
blue:214} ue: -
ColorPicker

LabeledSlider LabeledSlider LabeledSlider

green: s 187 blue: =" 214

CS 312 Software Development

Introduction to React: Writing code

ColorPicker

function ColorPicker() {
const [red, setRed] = useState(0);
const [green, setGreen] = useState(Q);
const [blue, setBluel = useState(0);

const color = {background: “rgb(${red}, ${green}, ${blue})’};

return (

<div className="color-picker">
<div className="color-swatch" style={color} ></div>
<LabeledSlider label="red" value={red} setValue={setRed}/>
<LabeledSlider label="green" value={green} setValue={setGreen}/>
<LabeledSlider label="blue" value={blue} setValue={setBlue}/>

</div>

)i

ColorPicker
State with React Hooks (useState)

const [red, setRed] = useState(0);

const [currentValue, setter] = useState(initial value)

destructuring assignment

ColorPicker

template literal

‘(,/’

const color = {background: ‘rgb(${red}, ${green}, ${blue})'};

ColorPicker

return (

<div className="color-picker">
<div className="color-swatch" style={color} ></div>
<LabeledSlider label="red" value={red} setValue={setRed}/>
<LabeledSlider label="green" value={green} setValue={setGreen}/>
<LabeledSlider label="blue" value={blue} setValue={setBlue}/>

</div>

);

ColorPicker

Passing props

<LabeledSlider label="blue" value={blue} setValue={setBlue}/>

-

passing state and setter as props

in JSX, we surround JS with {}

LabeledSlider

function LabeledSlider({ label, value, setValue }) {
return (
<div>
<div className="color-label">{label}</div>
<input type="range"
min="o"
max="255"
value={value}
onChange={ (event)=>{setValue(parseInt(event.target.value,10))}}/>
{value}
</div>
)i
}

LabeledSlider

Props

single destructured argument “props”

{ label, value, setValue }

LabeledSlider

Controlled components

<input type="range"
min="0"
max="255" .
value={value} any change updates state, forcing a re-render

onChange={(event)=>{setValue(parseInt(event.target.value,10))}}/>

Form elements (like input) are controlled

We exploit React’s re-render loop to get interaction
while maintaining a single source of truth

