
CS 312 Software Development
Introductions

Technology

HTML

JavaScript

CSS

Frameworks

Databases

Tools

VCS

Testing frameworks

Linter

Continuous Integration (CI)

PaaS & IaaS

Process

Agile (Scrum)

Test-driven development

(TDD)

DevOps

Design patterns

Context: Evolving ecosystem

Shrink wrapped ⇒ Software-as-a-Service

Monolithic ⇒ Services

On-premise ⇒ Cloud

Shrink wrapped (SWS) ⇒ Software-as-a-Service (SaaS)

Client-specific binaries that
must work in many HW/SW
environments

+ Rich user experience

- Hard to maintain, with
extensive compatibility
testing required

Online client-server model

+ One copy of SW, one HW
environment (controlled by
developers)

+ Easy to release updates

+ Easier to enable user
collaboration

- Limited by online latency,
capabilities of browser

What about mobile native applications?

SWS SaaS

Monolithic ⇒ Multiple services

Student

Info

C
ourse

Info
C

ourse

Registration

Backend

Frontend

C
ourse

Registration

Service

Student

Info

Service

C
ourse

Info

Service

Monolithic Services

Bezos’ 2002 services mandate

1. All teams will henceforth expose their data and functionality through
service interfaces.

2. Teams must communicate with each other through these interfaces.

3. There will be no other form of interprocess communication allowed: no

direct linking, no direct reads of another team's data store, no shared-
memory model, no back-doors whatsoever. The only communication
allowed is via service interface calls over the network.

4. It doesn't matter what technology they use. HTTP, Corba, Pubsub,
custom protocols -- doesn't matter. Bezos doesn't care.

5. All service interfaces, without exception, must be designed from the
ground up to be externalizable. That is to say, the team must plan and
design to be able to expose the interface to developers in the outside
world. No exceptions.

6. Anyone who doesn't do this will be fired.

Steve Yegge blog post (2011)

SaaS 3 demands on infrastructure

1. Communication: Customers must be able to interact
with service

2. Scalability: Respond to fluctuations in demand or new
services adding users rapidly

3. Dependability: Service & communication available 24x7

Cloud providers can offer all three on a pay-as-you-
go basis (utility) at hard to match prices

Single Page Applications (SPA)

Server now mostly provides
data, making SPAs natural
consumers of (micro)services

Wasson, Microsoft

Plan & Document ⇒ Agile

“Plan-and-Document”:

1. Before coding, the project manager makes plan

2. Write detailed documentation for all phases of the plan

3. Progress measured against the plan

4. Changes to project must be reflected in changes to

documentation and the plan

Implementations: Waterfall, Spiral, …

Waterfall

Requirements

Design

Development

Testing

Operations

Errors are caught early (and more cheaply)
before manifesting in next phase

Extensive documentation is deliverable
(facilitates maintenance)

Agile Manifesto (2001)

We are uncovering better ways of developing 
software by doing it and helping others do it.

Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

http://agilemanifesto.org

That is, while there is value in the items on 
the right, we value the items on the left more.

Plan & Document ⇒ Agile

Dilbert 11/26/17

Waterfall process:

Sequential phases

Agile: All lifecycle phases in
repeated short cycles

Requirements

Design

Development

Testing

Operations

“Full-Stack”, “DevOps” and other buzzwords…

•DevOps? Cross-functional (no more silos) teams that:

• Apply “development” practices to operations, e.g. infrastructure as code

• Automate everything

• Integrate operations into developer role

StackOverflow 2017 developer survey

"A Full-Stack Web Developer is
someone who is able to work on
both the front-end and back-end
portions of an application.”[1]

Summarizing our (the) landscape

• SW (can) evolve quickly to match user needs

• But doing so requires a development process that
embraces change

• Agile is a process that embraces change (as opposed
to plan & document, etc.)

• SaaS is an ideal domain for Agile processes

• Cloud gives everyone access to scalable HW and
services for implementing SaaS

• SPAs are natural consumers of these (micro)services

Software as a
Service (SaaS)

Agile
Development

Highly
productive

frameworks &
tools

Users can quickly use
latest Agile iteration

Frameworks & tools minimize obstacles
to Agile SW development

Frameworks match
SaaS needs

Beautiful code

Beautiful code:

• Meets customer needs

• Easy to evolve

The “cruft” that makes
enhancements expensive is
the technical debt created
by doing the easy thing, not
the “Right Thing”

“Bump the Lamp”

Who Framed Roger Rabbit

What I ask of you

• Commit to the CS312 tools and processes

•Perfect practice makes perfect

• Be a good teammate

•Be responsible for your learning, don’t get left behind
•Use your knowledge to make your team better

“Do the class”

Being a great teammate

• Creates shared context: molding another person’s understanding of the situation
while tailoring the message to be relevant and comprehensible to the other
person.

• Creates shared success: enabling success for everyone involved, possibly involving
personal compromises.

• Creates a safe haven: creating a safe setting where engineers can learn and
improve from mistakes and situations without negative consequences.

• Honest: truthful (i.e. no sugar coating or spinning the situation for their own
benefit).

Li et al. study “What Makes a Great Software Engineer”

Which of the following is a disadvantage
of services-oriented-architecture (SOA)
compared to a monolithic design? SOA:
A. May be harder to debug & tune
B. Results in lower developer productivity
C. Complexity is a poor match for small teams

Which aspect of the software
lifecycle consumes the most
resources?
A. Design
B. Development
C. Testing/debugging
D. Maintenance

