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Schneiderman’s Mantra

Overview first, 
zoom and filter, 

details on demand
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Data scalability

There is always more data

Thursday, March 20, 14



Solution 1: pixel space

Keep squishing those 
representations
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Solution 1: pixel space
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Solution 1: pixel space
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SeeSoft
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Solution 1: pixel space
Get bigger screens!
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Solution 2: data space / attribute space

Reduce # of attributes

Reduce # of items

Reduce range of items
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Elimination

eliminate items

eliminate attributes
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Aggregation
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Aggregation

What to group by?
categorical data or shared data values
spatial position
algorithmic (i.e., clustering based on attributes)
user defined

How to group?
math function on attributes (e.g., min, max, mean, mode, sum, count, etc...)
semantics or shared abstraction
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Pixel-level binning
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Pixel-level binning
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Pixel-level binning
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Pixel-level binning
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Aggregation
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Aggregation
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Aggregation
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Aggregation
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Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

Figure 7: US airlines graph (235 nodes, 2101 edges) (a) not bundled and bundled using (b) FDEB with inverse-linear model,
(c) GBEB, and (d) FDEB with inverse-quadratic model.

Figure 8: US migration graph (1715 nodes, 9780 edges) (a) not bundled and bundled using (b) FDEB with inverse-linear
model, (c) GBEB, and (d) FDEB with inverse-quadratic model. The same migration flow is highlighted in each graph.

Figure 9: A low amount of straightening provides an indication of the number of edges comprising a bundle by widening the
bundle. (a) s = 0, (b) s = 10, and (c) s = 40. If s is 0, color more clearly indicates the number of edges comprising a bundle.

we generated use the rendering technique described in Sec-
tion 4.1. To facilitate the comparison of migration flow in
Figure 8, we use a similar rendering technique as the one
that Cui et al. [CZQ⇤08] used to generate Figure 8c.

The airlines graph is comprised of 235 nodes and 2101
edges. It took 19 seconds to calculate the bundled airlines
graphs (Figures 7b and 7d) using the calculation scheme pre-

sented in Section 3.3. The migration graph is comprised of
1715 nodes and 9780 edges. It took 80 seconds to calculate
the bundled migration graphs (Figures 8b and 8d) using the
same calculation scheme. All measurements were performed
on an Intel Core 2 Duo 2.66GHz PC running Windows XP
with 2GB of RAM and a GeForce 8800GT graphics card.
Our prototype was implemented in Borland Delphi 7.

c� 2009 The Author(s)
Journal compilation c� 2009 The Eurographics Association and Blackwell Publishing Ltd.

Holden and van Wijk, “Force Directed Edge Bundling for Graph Visualization”, 2009
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http://bl.ocks.org/mbostock/1044242
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Clustering

http://bl.ocks.org/mbostock/4063663
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Clustering

InSpire, PNNL
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Navigation
Show me the 

data!
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Conventional navigation

Thursday, March 20, 14



Conventional navigation
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The keyhole problem
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The keyhole problem
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The keyhole problem
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Text document overview
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Text document overview
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Navigation strategies

borrowed from C. North

Detail only

Overview + Detail

Zooming

Overview + Detail

Focus + Context
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Pan and zoom

http://gigapan.com/

Thursday, March 20, 14

http://gigapan.com/viewer/PanoramaViewer.swf?url=http://share.gigapan.org/gigapans0/15374/tiles/&suffix=.jpg&startHideControls=0&width=59783&height=24658&nlevels=9&cleft=14600&ctop=13000&cright=16800&cbottom=15000&startEnabled=1
http://gigapan.com/viewer/PanoramaViewer.swf?url=http://share.gigapan.org/gigapans0/15374/tiles/&suffix=.jpg&startHideControls=0&width=59783&height=24658&nlevels=9&cleft=14600&ctop=13000&cright=16800&cbottom=15000&startEnabled=1


Pan and Zoom
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Zoomable user interface

http://prezi.com/veychlhwrdgz/putting-time-in-perspective/
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Zoomable user interface

http://scaleofuniverse.com
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Space-scale diagrams

ABSTRACT
Big information worlds cause big problems for interfaces.
There is too much to see. They are hard to navigate. An
armada of techniques has been proposed to present the
many scales of information needed. Space-scale diagrams
provide an analytic framework for much of this work. By
representing both a spatial world and its different magnifi-
cations explicitly, the diagrams allow the direct visualiza-
tion and analysis of important scale related issues for
interfaces.

KEYWORDS: Zoom views, multiscale interfaces, fisheye
views, information visualization, GIS; visualization, user
interface components; formal methods, design rationale.

INTRODUCTION
For more than a decade there have been efforts to devise sat-
isfactory techniques for viewing very large information
worlds. (See, for example, [6] and [9] for recent reviews and
analyses). The list of techniques for viewing 2D layouts alone
is quite long: the Spatial Data Management System [3], Bifo-
cal Display[1], Fisheye Views [4][12], Perspective Wall [8],
the Document Lens [11], Pad [10], and Pad++ [2], the Macro-
Scope[7], and many others.

Central to most of these 2D techniques is a notion of what
might be called multiscale viewing. An interface is devised
that allows information objects and the structure embedding
them to be displayed at many different magnifications, or
scales. Users can manipulate which objects, or which part of
the whole structure, will be shown at what scale. The scale
may be constant and manipulated over time as with a zoom
metaphor, or varying over a single view as in the distortion
techniques (e.g., fisheye or bifocal metaphor). In either case,
the basic assumption is that by moving through space and
changing scale the users can get an integrated notion of a very
large structure and its contents, navigating through it in ways
effective for their tasks.

This paper introduces space-scale diagrams as a technique
for understanding such multiscale interfaces. These diagrams
make scale an explicit dimension of the representation, so
that its place in the interface and interactions can be visual-
ized, and better analyzed. We are finding the diagrams useful
for understanding such interfaces geometrically, for guiding
the design of code, and as interfaces to authoring systems for
multiscale information.

This paper will first present the necessary material for under-
standing the basic diagram and its properties. Subsequent
sections will then use that material to show several examples
of their uses.

THE SPACE-SCALE DIAGRAM
The basic diagram concepts
The basic idea of a space-scale diagram is quite simple. Con-
sider, for example, a square 2D picture (Figure 1a). The
space-scale diagram for this picture would be obtained by
creating many copies of the original 2D picture, one at each
possible magnification, and stacking them up to form an
inverted pyramid (Figure 1b). While the horizontal axes rep-

Figure 1. The basic construction of a Space-Scale dia-
gram from a 2D picture.
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resent the original spatial dimensions, the vertical axis repre-
sents scale, i.e., the magnification of the picture at that level.
In theory, this representation is continuous and infinite: all
magnifications appear from 0 to infinity, and the “picture”
may be a whole 2D plane if needed.

Before we can discuss the various uses of these diagrams,
three basic properties must be described. Note first that a
user’s viewing window can be represented as a fixed-size
horizontal rectangle which, when moved through the 3D
space-scale diagram, yields exactly all the possible pan and
zoom views of the original 2D surface (Figure 2). This prop-
erty is useful for studying pan and zoom interactions in con-
tinuously zoomable interfaces like Pad and Pad++ [2][10].

Secondly, note that a point in the original picture becomes a
ray in this space-scale diagram. The ray starts at the origin
and goes through the corresponding point in the continuous
set of all possible magnifications of the picture (Figure 3). We
call these the great rays of the diagram. As a result, regions of
the 2D picture become generalized cones in the diagram. For
example, circles become circular cones and squares become
square cones.

A third property follows from the fact that typically the prop-
erties of the original 2D picture (e.g., its geometry) are con-
sidered invariant under moving the origin of the 2D
coordinate system. In the space-scale diagrams, such a
change of origin corresponds to a “shear” (Figure 4), i.e.,
sliding all the horizontal layers linearly so as to make a differ-
ent great ray become vertical. Thus, if one only wants to con-
sider properties of the original diagram that are invariant
under change of origin, the only meaningful properties of the
space-scale diagram are those invariant under such a shear.
For example, the absolute angles between great rays change
with shear, and so should be given no special meaning.

Now that the basic concepts and properties of space-scale
diagrams have been introduced by the detailed Figures 1-4,

u1

u2

v

Viewing Window

Figure 2. The viewing window (a) is shifted rigidly
around the 3D diagram to obtain all possible pan/
zoom views of the original 2D surface, e.g., (b) a
zoomed in view of the circle overlap, (c) a zoomed out
view including the entire original picture, and (d) a
shifted view of a part of the picture.

(b)

(d)

(c)

(a)

we can make a simplification. Those figures have been three
dimensional, comprising two dimensions of space and one of
scale (“2+1D”). Substantial understanding may be gained,
however, from the much simpler two-dimensional versions,
comprising one dimension of space and one dimension of
scale (“1+1D”). It could, for example be a vertical slice from,
or an edge on view of, the 2+1D version, or just a space-scale
view of a truly 1D world (e.g., a time line). In the 1+1D dia-
gram, since the spatial world is 1D, a viewing window is a
line segment that can be moved around the diagram to repre-

x

y

u1

u2

v

p

q

q

p

Figure 3. Points like p and q in the original 2D surface
become corresponding “great rays” p and q in the
space-scale diagram. (The circles in the picture there-
fore become cones in the diagram, etc.)

u1

u2

v

u1

u2

v

Figure 4. Shear invariance. Shifting the origin in the 2D
picture from p to q corresponds to shearing the layers
of the diagram so the q line becomes vertical. Each
layer is unchanged, and great rays remain straight.
Only those conclusions which remain true under all
such shears are valid.

q q
p p
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p

q

p

q x
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Furnas and Bederson, “Space-Scale Diagrams: Understanding Multiscale Interfaces”
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Space-scale diagrams

Furnas and Bederson, “Space-Scale Diagrams: Understanding Multiscale Interfaces”

sent different pan and zoom positions. It is convenient to
show the window as a narrow slit, so that looking through it
shows the corresponding 1D view. Figure 5 shows one such
diagram illustrating a sequence of three zoomed views.

The basic math.
It is helpful to characterize these diagrams mathematically.
This will allow us to use analytic geometry along with the
diagrams to analyze multiscale interfaces, and also will allow
us to map conclusions back into the computer programs that
implement them.

The mathematical characterization is simple. Let the pair
(x, z) denote the point x in the original picture considered
magnified by the multiplicative scale factor z. We define any
such (x, z) to correspond to the point (u, v) in the space-scale
diagram where u=xz and v=z. This second trivial equation is
needed to make the space-scale coordinates distinct, and
because there are other versions of space-scale diagrams, e.g.,
where v=log(z). Conversely, of course, a point (u, v) in the
space-scale diagram corresponds to (x, z), i.e., a point x in the
original diagram magnified by a factor z, where x=u/v, and
z=v. The notation is a bit informal, in that x and u are single
coordinates in the 1+1D version of the diagrams, but a
sequence of two coordinates in the 2+1D version.

A few words are in order about the XZ vs. UV characteriza-
tions. The (x,z) notation can be considered a world-based

u

Figure 5. A “1+1D” space-scale diagram has one spatial
dimension, u, and one scale dimension, v. The six
great rays here correspond to six points in a 1D spa-
tial world, put together at all magnifications. The
viewing window, like the space itself, is one dimen-
sional, and is shown as a narrow slit with the corre-
sponding 1-D window view being visible through the
slit. Thus the sequence of views (a), (b), (c) begins
with a view of all six points, and then zooms in on the
point q. The views, (a), (b), (c) are redrawn at bottom
to show the image at those points.

v
1-D Viewing Window

(c)

(b)

(a)

q

(c)
(b)
(a)

q

“zoomed out”

“zoomed in”

coordinate system. It is important in interface implementation
because typically a world being rendered in a multiscale
viewer is stored internally in some fixed canonical coordinate
system (denoted with x’s). The magnification parameter, z, is
used in the rendering process. Technically one could define a
type of space-scale diagram that plots the set of all (x,z) pairs
directly. This “XZ” diagram would stack up many copies of
the original diagram, all of the same size, i.e., without rescal-
ing them. In this representation, while the picture is always
constant size, the viewing window must grow and shrink as it
moves up and down in z, indicating its changing scope as it
zooms. Thus while the world representation is simple, the
viewer behavior is complex. In contrast, the “UV” represen-
tation of the space-scale diagrams focused on in this paper
can be considered view-based. Conceptually, the world is
statically prescaled, and the window is rigidly moved about.
The UV representation is thus very useful in discussing how
the views should behave. The coordinate transform formulas
allow problems stated and solved in terms of view behavior,
i.e., in the UV domain, to have their solutions transformed
back into XZ for implementation.

EXAMPLE USES OF SPACE-SCALE DIAGRAMS
With these preliminaries, we are prepared to consider various
uses of space-scale diagrams. We begin with a few examples
involving navigation in zoomable interfaces, then consider
how the diagrams can help visualize multiscale objects, and
finish by showing how other, non-zoom multiscale views can
be characterized.

Pan-zoom trajectories
One of the dominant interface modes for looking at a large
2D world is to provide an undistorted window onto the world
and allow the user to pan and zoom. This method is used in
[2][3][7][10], as well as essentially all map viewers in GISs
(geographic information systems). Space-scale diagrams are
a very useful way for researchers studying interfaces to visu-
alize such interactions, since moving a viewing window
around via pans and zooms corresponds to taking it on a tra-
jectory through scale-space. If we represent the window by
its midpoint, the trajectories become curves and are easily
visualized in the space-scale diagram. In this section, we first
show how easily space-scale diagrams represent pan/zoom
sequences. Then we show how they can be used to solve a
very concrete interface problem. Finally we analyze a more
sophisticated pan/zoom problem, with a rather surprising
information theoretic twist.
Basic trajectories. Figure 6 shows how the basic pan-zoom
trajectories can be visualized. In a simple pan (a), the win-
dow’s center traces out a horizontal line as it slides through
space at a fixed scale. A pure zoom around the center of the
window follows a great ray (b), as the window’s viewing
scale changes but its position is constant. In a “zoom-around”
the zoom is centered around some fixed point other than the
center of the window, e.g., q at the right hand edge of the win-
dow. Then the trajectory is a straight line parallel to the great
ray of that fixed point. This moves the window so that the
fixed point stays put in the view. In the figure, for example,
the point, q, always intersects the windows on trajectory (c) at
the far right edge, meaning that the point, q, is always at that

Thursday, March 20, 14



Semantic zooming

Figure 11 shows how geometric zooming and semantic
zooming appear in a space-scale diagram. The object on the
left, shown as an infinitely extending triangle, corresponds to
a 1D gray line segment, which just appears larger as one
zooms in (upward: 1,2,3). On the right is an object that
changes its appearance as one zooms in. If one zooms out too
far (a), it is not visible. At some transition point in scale, it
suddenly appears as a three segment dashed line (b), then as a
solid line (c), and then when it would be bigger than the win-
dow (d), it disappears again.

The importance of such a diagram is that it allow one to see
several critical aspects of semantic objects that are not other-
wise easily seen. The transition points, i.e., when the object
changes representation as a function of scale, is readily appar-
ent. Also the nature of the changing representations, what it
looks like before and after the change, can be made clear. The
diagram also allows one to compare the transition points and
representations of the different objects inhabiting a multi-
scale world.

We are exploring direct manipulation in space-scale diagrams
as an interface for multi-scale authoring of semantically
zoomable objects. For example, by grabbing and manipulat-
ing transition boundaries, one can change when an object will
zoom semantically. Similarly, suites of objects can have their
transitions coordinated by operations analogous to the snap,
align, and distribute operators familiar to drawing programs,
but applied in the space-scale representation.

As another example of semantic zooming, we have also used
space-scale diagrams to implement a “fractal grid.” Since
grids are useful for aiding authoring and navigation, we
wanted to design one that worked at all scales -- a kind of vir-
tual graph paper over the world, where an ever finer mesh of
squares appears as you zoom in. We devised the implementa-

Figure 11. Semantic Zooming. Bottom slices show views
at different points.

u

v

(a)

(b)

(c)

(d)(3)

(2)

(1)

(1,a)

(2)

(3) (d)

(c)

(b)

tion by first designing the 1D version using the space-scale
diagram of Figure 12. This is the analog of a ruler where ever
finer subdivisions appear, but by design here they appear only
when you zoom in (move upward in the figure). There are
nicely spaced gridpoints in the window at all five zooms of
the figure. Without this fractal property, at some magnifica-
tion the grid points would disappear from most views.

Warps and fisheye views
Space-scale diagrams can also be used to produce many
kinds of image warpings. We have characterized the space-
scale diagram as a stack of image snapshots at different
zooms. So far in this paper, we have always taken each image
as a horizontal slice through scale space. Now, instead imag-
ine taking a cut of arbitrary shape through scale space and
projecting down to the u axis. Figure 13 shows a step-up-
step-down cut that produces a mapping with two levels of
magnification and a sharp transition between them. Here, (a)
shows the trajectory through scale space, (b) shows the result
that would obtain if the cut was purely flat at the initial level,
and (c) shows the warped result following.

Different curves can produce many different kinds of map-
pings. For example, Figure 14 shows how we can create a
fisheye view.* By taking a curved trajectory through scale-
space, we get a smooth distortion that is magnified in the cen-
ter and compressed in the periphery. Other cuts can create
bifocal [1] and perspective wall [8].

For cuts as in Figure 13, which are piece-wise horizontal, the
magnification of the mapping comes directly from the height
of the slice. When the cuts are curved and slanted, the geome-

*  In fact exactly this strategy for creating 2D fisheye views
was proposed years ago in [5], p 9,10.

Figure 12. Fractal grid in 1D. As the window moves up
by a factor of 2 magnification, new gridpoints appear
to subdivide the world appropriately at that scale. The
view of the grid is the same in all five windows.

v
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Overview + detail
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Overview + detail

http://www.vcbio.science.ru.nl/en/image-gallery/show/labels/print/PL0016/
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Overview + detail

borrowed from C. North
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Focus + context

Robertson and MacKinlay, “Document Lens”
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Focus + context

Robertson, MacKinlay, and Card, “Perspective Wall”
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Focus + context

Bederson, “Fisheye menus”
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Focus + context

Bederson, “Fisheye menus”
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Focus + context

Rao and Card, “The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information”
Rao, Card, Color Plate 1

Rao, Card, Color Plate 2

6
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Visual transfer functions

borrowed from C. North

Information surface

Display 
surface

Information surface

Display 
surface

Bifocal
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Visual transfer functions

borrowed from C. NorthPerspective
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Visual transfer functions

borrowed from C. NorthBubble
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Visual transfer functions

borrowed from C. NorthFish-eye
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Visual transfer functions

borrowed from C. NorthMagnifying glass
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Focus + Context 
Screen

Baudish, “Keeping things in context...”
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F+C versus O+D

borrowed from C. North

Focus + Context

+ space efficient
+ smooth transition between detail 
and context

- distorts the view
- content moves differently than the 
mouse
- zoom factors are usually small 
(otherwise the distortion is large)

Overview + Detail

+ scales up to much larger data
+ multiple overviews possible
+ easier to implement

- detail and overview are disconnected
- replicates data
- takes up more screen real estate
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Navigation strategies

borrowed from C. North

detail only detail without overview

pan and zoom detail or overview

overview + detail detail next to overview

focus + context detail with overview
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