Navigation and Overview

C. Andrews

2014-03-20

Schneiderman's Mantra

Overview first, zoom and filter, details on demand

Data scalability

There is always more data

Solution 1: pixel space

Keep squishing those representations

Solution 1: pixel space

Solution 1: pixel space

SeeSoft

Solution 1: pixel space

Get bigger screens!

Solution 2: data space / attribute space

Reduce \# of attributes

Reduce \# of items

	-		-	E	$\bigcirc \quad{ }^{\circ}$	
doctor name		companions start		end	episodes	ration
2	1 William Hartnell	10	1963	1966	135	3288
	2 Patrick Troughton	5	1966	1970	127	3183
4	3 Jon Pertwee	3	1970	1974	129	3206
5	4 Tom Baker	8	1974	1982	174	4248
6	5 Peter Davidson	6	1982	1984	69	1800
,	6 Colin Baker	2	1984	1987	31	1029
-	7 Sylvester McCoy	2	1987	1989	42	1025
,	8 Paul McGann	1	1996	1996	1	84
10	9 Christopher Eccleston	3	2005	2005	13	568
11	10 David Tennant	5	2005	2010	48	2368
12	11 Matt Smith	4	2010	2013	44	2083

Reduce range of items

Elimination

eliminate attributes

eliminate items

Baby Name> Ch Both \bigcirc Boys \bigcirc Girls

Aggregation

Aggregation

What to group by?
categorical data or shared data values
spatial position
algorithmic (i.e., clustering based on attributes)
user defined
How to group?
math function on attributes (e.g., min, max, mean, mode, sum, count, etc...) semantics or shared abstraction

Pixel-level binning

Pixel-level binning

Pixel-level binning

Pixel-level binning

Aggregation

MPG
52.10

Aggregation

Aggregation

Aggregation

Holden and van Wijk, "Force Directed Edge Bundling for Graph Visualization", 2009

Clustering

http://bl.ocks.org/mbostock/4063663

Clustering

InSpire, PNNL

Navigation

Show me the Navigation data!

Conventional navigation

Conventional navigation

The keyhole problem

The keyhole problem

The keyhole problem

Text document overview

Text document overview

function makeScatterplot() \{

$$
\text { var margin = \{top:20, bottom: 20, left:60, right: 20\}; }
$$

 var width \(=500\), height \(=500\);
 var xValue = function(d) \{return d[0]\};
 var yValue = function(d)\{return d[1]\};
 var xScale = d3.scale. linear();
 var \(\mathrm{yScale}=\mathrm{d3}\).scale.linear();
 var xAxis = d3.svg.axis().scale(xScale).orient("bottom");
 var yAxis = d3.svg.axis().scale(yScale).orient("left");
 function chart(selection) \{
 selection.each(function(data) \{
 xScale. range([0,width - margin. left - margin. right])
 .nice()
 .domain(d3.extent(data, xValue));
 yScale. range([height - margin.top - margin. bottom, 0])
 .nice()
 .domain(d3.extent(data, yValue));
 var svg = d3.select(this).append("svg")
 .attr(\{width:width, height:height\});
 var canvas = svg.append("g")
.attr("transform","translate("+margin. left +","+margin.top+")");
// create the dots
var dots = canvas.selectAll("circle")
.data(data)
.enter()
-annond("rirr1a").

Navigation strategies

Detail only

Overview + Detail

Zooming

Pan and zoom

http://gigapan.com/

Pan and Zoom

Zoomable user interface

Zoomable user interface

Scale of the Universe

Giant Earthworm

Space-scale diagrams

Furnas and Bederson, "Space-Scale Diagrams: Understanding Multiscale Interfaces"

Space-scale diagrams

1-D Viewing Window

Furnas and Bederson, "Space-Scale Diagrams: Understanding Multiscale Interfaces"

Semantic zooming

Overview + detail

Overview + detail

Overview + detail

Overview + detail

Overview + detail

Focus + context

Focus + context

Focus + context

Focus + context

Bederson, "Fisheye menus"

Focus + context

Visual transfer functions

Bifocal

Information surface

Visual transfer functions

Perspective

Visual transfer functions

Bubble

Visual transfer functions

Fish-eye

Visual transfer functions

Magnifying glass

Focus + Context Screen

$F+C$ versus $O+D$

Focus + Context

+ space efficient
+ smooth transition between detail and context
- distorts the view
- content moves differently than the mouse
- zoom factors are usually small (otherwise the distortion is large)

Overview + Detail

+ scales up to much larger data
+ multiple overviews possible
+ easier to implement
- detail and overview are disconnected
- replicates data
- takes up more screen real estate

Navigation strategies

detail only
pan and zoom
overview + detail
focus + context
detail without overview
detail or overview
detail next to overview
detail with overview

