A Little History...

CS 202-Spring 2016
Professor Christopher Andrews

In the beginning...

300 B.C. - The Salamis Tablet

I200 A.D. - the abacus appears
\$6,

An idea is born...

1630-William Oughtred develops the slide rule

An idea is born...

1624-Blaise Pascal and the Pascaline
\square a geared device that can add \& subtract
multiplication and division are added in the next two centuries

Punch cards

1800- Joseph Jacquard develops the Jacquard Loom

Industrial Revolution

Charles Babbage

\square The Difference Engine (1820) - steam powered device for generating mathematical tables
The Analytical Engine (1834) - essentially the first computer

Industrial Revolution

\square Lady Ada Lovelace
Considered to be the first programmer
\square The concept of the loop is credited to her

The Dawn of Computers

1936-Alan Turing

- Writes a critical essay describing the Turing Machine

1938-Konrad Zuse develops the Zi

World War II

The Allies form a team of code breakers at Bletchley Park to crack the Enigma code

Tommy Flowers designs the Colossus computer

The Mark I

1944-Howard Aiken develops the Mark I
the first all electronic calculator
\square The Mark I is half as long as a football field and contains 500 miles of wire
\square Used electro-mechanical relays
\square calculations took 3-5 seconds apiece
1945 - The first actual computer bug is
 identified...

The ABC

1937-John Atanasoff builds the Atanasoff-Berry Computer (ABC) at Iowa State

The First Generation (1946-1959)

\square Vacuum Tubes

large, generated a lot of heat and not terribly reliable

The First Generation (1946-1959)

Magnetic Drum memory device that rotated under a magnetic head

The ENIAC

Electronic Numerical Integrator And Computer
\square Was developed to calculate trajectory tables for the military
work began in 1943 and finished in 1946-too late for the war
\square in use until 1955
\square Eckert and Mauchly working at UPenn
Considered the first fully functional, all electric, programable computer

ENIAC Facts

Worked on decimal numbers - not binary
Programed manually using switches
\square think old time telephone operators...
\square Used vacuum tubes rather than relays
\square Contained 18,000 vacuum tubes, 70,000 resistors and over 5 million soldered joints

- Consumed 140 kW of power
$\square 5,000$ operations a second
\square about 20000 times faster than the Mark I

The ENIAC at Work

Repairing the ENIAC

Replacing a bad tube meant eheeking among ENIAC's 19,000 possibilities.

von Neumann Architecture

1945 - John von Neumann

\square Realized that there was no real difference between program instructions and data-it is all just bits (stored-program concept)

The Architecture
I/O devices
Main memory (short term)
Secondary memory (long term)

\square Central Processing Unit (the brains)

The Architecture

Central Processing Unit (CPU)

IAS computer

Developed at Princeton's Institute for Advanced Studies in 1946

- Completed in 1952
- We can consider it to be a prototype of all subsequent general purpose computers

Structure of the IAS

ISA Instruction Set

Instruction Type	Opcode	Symbolic Representation	Description	
Data transfer	00001010	LOAD MQ	Transfer contents of register MQ to the accumulator AC	
	00001001	LOAD MQ, M (X)	Transfer contents of memory location X to MQ	
	00100001	STOR M(X)	Transfer contents of accumulator to memory location X	
	00000001	LOAD M(X)	Transfer $\mathrm{M}(\mathrm{X})$ to the accumulator	
	00000010	LOAD $-\mathrm{M}(\mathrm{X})$	Transfer $-\mathrm{M}(\mathrm{X})$ to the accumulator	
	00000011	LOAD \|M(X)		Transfer absolute value of $\mathrm{M}(\mathrm{X})$ to the accumulator
	00000100	LOAD $-\|\mathrm{M}(\mathrm{X})\|$	Transfer $-\mathrm{M}(\mathrm{X}) \mid$ to the accumulator	
Unconditional branch	00001101	JUMP M ($\mathrm{X}, 0: 19)$	Take next instruction from left half of $\mathrm{M}(\mathrm{X})$	
	00001110	JUMP M (X,20:39)	Take next instruction from right half of $\mathrm{M}(\mathrm{X})$	
Conditional branch	00001111	JUMP + M $(X, 0: 19)$	If number in the accumulator is nonnegative, take next instruction from left half of $\mathrm{M}(\mathrm{X})$	
	00010000	$\begin{aligned} & \text { JUMP+ } \\ & \text { M(X,20:39) } \end{aligned}$	If number in the accumulator is nonnegative, take next instruction from right half of $\mathrm{M}(\mathrm{X})$	
Arithmetic	00000101	ADD M(X)	Add $\mathrm{M}(\mathrm{X})$ to AC ; put the result in AC	
	00000111	$\mathrm{ADD}\|\mathrm{M}(\mathrm{X})\|$	Add $\mathrm{IM}(\mathrm{X}) \mid$ to AC ; put the result in AC	
	00000110	SUB M(X)	Subtract $M(X)$ from $A C$; put the result in AC	
	00001000	SUB $\|\mathbf{M}(\mathrm{X})\|$	Subtract $\|\mathrm{M}(\mathrm{X})\|$ from AC ; put the remainder in AC	
	00001011	MUL M(X)	Multiply M(X) by MQ; put most significant bits of result in AC , put least significant bits in MQ	
	00001100	DIV M(X)	Divide AC by $\mathrm{M}(\mathrm{X})$; put the quotient in $M Q$ and the remainder in $A C$	
	00010100	LSH	Multiply accumulator by 2 , i.e., shift left one bit position	
	00010101	RSH	Divide accumulator by 2 , i.e., shift right one position	
Address modify	00010010	STOR M(X,8:19)	Replace left address field at $\mathrm{M}(\mathrm{X})$ by 12 rightmost bits of AC	
	00010011	STOR M(X,28:39)	Replace right address field at $\mathrm{M}(\mathrm{X})$ by 12 rightmost bits of AC	

Harvard architecture

The UNIVAC

UNIVersal Automatic Computer
\square First commercial computer, released in 1951
\square Based upon the von Neumann architecture
\square Product of the Eckert-Mauchly Computer Corporation

- Many generations of the UNIVAC
\square around for thirty years or so

The Second Generation (1959-1965)

- The Transistor
smaller, faster, cheaper and more reliable than the vacuum tube

Magnetic Core Memory
\square instant access to items in memory

Transistors

Invented in 1947 by Bardeen, Brattain and Shockley
\square Solid State (no moving parts)
\square Silicon
\square low heat dissipation
\square just a switch...

Transistors

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

Magnetic Core Memory

Used tiny, doughnut shaped devices
\square one per bit

- Always available
\square i.e. instant access to data
\square No moving parts

The Third Generation (1965-197I)

Integrated Circuits

\square solid pieces of silicon containing multiple components
much smaller, faster cheaper and more reliable than printed circuit boards

Silicon Wafer

IC Memory

Memory moved from cores to ICs as well
\square replace a single core (I bit) with 256 bit IC
\square Non-destructive read
unlike core memory
\square Much faster
\square Still volatile
i.e. goes away when the power is turned off

Moore's Law

1965 - Gordon Moore
Co-founder of Intel
\square Predicted that the number of circuits that could be placed on a single IC would double each year

- or 18 months... or 10 months, or every few years
\square Chip cost has stayed the same
\square Tighter packing means shorter interconnects
faster
more reliable

reduced power and cooling requirements

Moore's Law

Moore's Law - 2005

Transistors
Per Die

Moore's Law

arstechnica

A MAINMENU v MY STORIES:25 FORUMS SUBSCRIBE JOBS

Moore's law really is dead this time

The chip industry is no longer going to treat Gordon Moore's law as the target to aim for.
by Peter Bright - Feb 10, 2016 8:22pm EST

Other Advancements

1960 - DEC developed the first terminal
\square keyboard and screen for direct interaction with computer
1962 - Stanford and Purdue open the first CS departments
$\square 1962$ - The first computer game is created at MIT

1964-Doug Englebart develops the mouse
1968-The birth of Arpanet

SpaceWar

Developed by Steve Russell, MIT grad student

PDP 8

The first of the minicomputers

The Fourth Generation (1971- ...)

Large Scale Integrated Circuits

\square able to put a whole microcomputer on a single chip

Brought about the PC revolution
chips were now small enough and cheap enough to create personal computers
Innovations come fast and furious

Enter the Microprocessor...

Ascendancy of Intel

Model Number	First Delivery	Clock rate	Bus width	Addressable memory	Number of Transistors
4004	$11 / 15 / 71$	740 kHz	4 bits	640 bytes	2,300
8008	$4 / 1 / 72$	$0.5-0.8$ MHz	8 bits	16 KB	3,500
8080	$4 / 1 / 72$	2 MHz	8 bits	16 KB	6,000
$8086 / 8088$	$6 / 8 / 78$	$5-10 \mathrm{MHz}$	16 bits	1 MB	29,000

The first personal computer

1975 - The first PC, the Altair 8800 is released on the public

An innovation... that vanished

1973 - Xerox PARC develops the Alto
\square uses ethernet connection, a mouse and the first GUI

Birth of Apple

1977-Steve Jobs and Steve Wozniak form Apple Computers
the Apple II is released from their garage

Original Apple II

The IBM PC

1981 - Release of the first IBM Personal Computer

The GUI hits the mainstream

1984- The Macintosh Computer says hello

Hitting the power wall

FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler pipeline with lower clock rates and multiple processors per chip. Copyright © 2009 Elsevier, Inc. All rights reserved.

Processor performance

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780 as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technologydriven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for floating-pointoriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency have slowed uniprocessor performance recently, to about 20% per year. Copyright © 2009 Elsevier, Inc. All rights reserved.

Multiprocessors...

GPGPU computing

