A reduction from set A to set B is a computable function $\sigma : A \to B$ such that

$$x \in A \iff \sigma(x) \in B.$$

If A reduces to B via σ we write $A \leq_\sigma B$.

We use reductions to prove certain sets are not recursive or not r.e. In class we showed:

1. If $A \leq B$ and A is not recursive, then B is not recursive.
2. If $A \leq B$ and A is not r.e., then B is not r.e.

So if we have a set A that we know to be not recursive (e.g., $HP = \{ M # x \mid M \text{ halts on } x \}$) and we can reduce that set A to another set B, then we have shown B is not recursive. Similarly a reduction from a non-r.e. set A (e.g., $\overline{HP} = \{ M # x \mid M \text{ loops on } x \}$) to another set B would show that B is not r.e.

Reduction Examples:

1. Let $ALL = \{ M \mid L(M) \text{ accepts all strings}\}$. Show ALL is not recursive.

 Solution: We know the set $HP = \{ M # x \mid M \text{ halts on } x \}$ is r.e. but not recursive.

 We show $HP \leq ALL$, and therefore that ALL is not recursive:

 Given TM M and input string x, we describe TM $N = \sigma(M # x)$ such that

 $$M # x \in HP \iff N \in ALL.$$

 That is, given TM M and input string x, we describe TM $N = \sigma(M # x)$ such that

 $$M \text{ halts on } x \iff N \text{ accepts all strings.}$$

 TM N will have M and x hardcoded into its design. TM N on its input y does the following:

 (a) Simulates M on x.

 (b) If M halts on x then N accepts y.

 Our description of N ensures that if M halts on x, then N accepts all strings; if M loops on x, then N accepts $\emptyset \neq \Sigma^*$. This description of N is exactly the behavior we needed to achieve a reduction $HP \leq ALL$. Thus we have shown ALL is not recursive.
2. Let \(REC = \{ M \mid L(M) \text{ is recursive} \} \). Show \(REC \) is not r.e.

Solution: We know the set \(\overline{\Pi^P} = \{ \overline{M\#x} \mid M \text{ loops on } x \} \) is not r.e.

We show \(\overline{\Pi^P} \leq REC \), and therefore that \(REC \) is not r.e.:

Given TM \(M \) and input string \(x \), we describe TM \(N = \sigma(M\#x) \) such that

\[
M\#x \in \overline{\Pi^P} \iff N \in REC.
\]

That is, given TM \(M \) and input string \(x \), we describe TM \(N = \sigma(M\#x) \) such that

\[
M \text{ loops on } x \iff L(N) \text{ is recursive.}
\]

TM \(N \) will have \(M \) and \(x \) hardcoded into its design. TM \(N \) on its input \(y \) does the following:

(a) Simulates \(M \) on \(x \).

(b) If \(M \) halts on \(x \) then \(N \) runs machine \(K \) on \(y \), where \(K \) is a TM that accepts the non-recursive set \(HP \). \(N \) accepts \(y \) iff \(K \) accepts \(y \).

Our description of \(N \) ensures that if \(M \) loops on \(x \), then \(N \) accepts \(\{ \} \), a recursive set; if \(M \) halts on \(x \), then \(N \) accepts \(HP \), a non-recursive set. This description of \(N \) is exactly the behavior we needed to achieve a reduction \(\overline{\Pi^P} \leq REC \). Thus we have shown \(REC \) is not r.e.

3. Let \(INF = \{ M \mid L(M) \text{ is infinite} \} \). Show \(INF \) is not r.e.

Solution: We know the set \(\overline{\Pi^P} = \{ \overline{M\#x} \mid M \text{ loops on } x \} \) is not r.e.

We show \(\overline{\Pi^P} \leq INF \) and therefore that \(INF \) is not r.e.:

Given TM \(M \) and input string \(x \), we describe TM \(N = \sigma(M\#x) \) such that

\[
M\#x \in \overline{\Pi^P} \iff N \in INF.
\]

That is, given TM \(M \) and input string \(x \), we describe TM \(N = \sigma(M\#x) \) such that

\[
M \text{ loops on } x \iff N \text{ accepts an infinite set.}
\]

TM \(N \) will have \(M \) and \(x \) hardcoded into its design. TM \(N \) on its input \(y \) does the following:

(a) Simulates \(M \) on \(x \) for \(|y| \) steps.

(b) If \(M \) halts on \(x \) in \(|y| \) steps, then \(N \) rejects \(y \). Otherwise if \(M \) has not yet halted on \(x \), then \(N \) accepts \(y \).

Our description of \(N \) ensures that if \(M \) loops on \(x \), \(N \) accepts \(\Sigma^* \), an infinite set; if \(M \) halts on \(x \), then \(N \) accepts \(\{ y \mid |y| < \text{ number of steps that } M \text{ runs on } x \} \), a finite set. This description of \(N \) is exactly the behavior we needed to achieve a reduction \(\overline{\Pi^P} \leq INF \). Thus we have shown \(INF \) is not r.e.
4. Let $REC = \{ M \mid L(M) \text{ is recursive}\}$. Show REC is not recursive.

Solution: We know the set $HP = \{ M\#x \mid M \text{ halts on } x \}$ is r.e. but not recursive.

We show $HP \leq REC$, and therefore that REC is not recursive:

Given TM M and input string x, we describe TM $N = \sigma(M\#x)$ such that

$$M\#x \in HP \iff N \in REC.$$

That is, given TM M and input string x, we describe TM $N = \sigma(M\#x)$ such that

$$M \text{ halts on } x \iff N \text{ accepts a recursive set.}$$

TM N will have M and x hardcoded into its design. TM N on its input y does the following:

(a) Simulates M on x for $|y|$ steps.

(b) If M halts on x in $|y|$ steps, then N rejects y. Otherwise if M has not yet halted on x, then N runs machine K on y, where K is a TM that accepts the non-recursive set HP. N accepts y if K accepts y.

Our description of N ensures that if M halts on x, then N accepts a subset of the strings $\{ y \mid |y| < \text{number of steps that } M \text{ runs on } x \}$, a finite and therefore recursive set; if M loops on x, then N accepts HP, a non-recursive set. This description of N is exactly the behavior we needed to achieve a reduction $HP \leq REC$. Thus we have shown REC is not recursive.

5. Let A and B be sets of Turing machines such that

$$A = \{ M \mid L(M) = \Sigma^* \} \text{ and } B = \{ N \mid L(N) = \{0^n1^n \mid n \geq 1 \} \}.$$

Show that $A \leq B$.

Given TM M we describe TM $N = \sigma(M)$ such that

$$M \in A \iff N \in B.$$

That is, given TM M we describe TM $N = \sigma(M)$ such that

$$M \text{ accepts } \Sigma^* \iff N \text{ accepts } \{0^n1^n \mid n \geq 1 \}.$$

TM N will have M hardcoded into its design. TM N on its input y does the following:

(a) Checks whether y is of the form 0^n1^n; if not, reject.

(b) Simulates M on all strings x where $|x| \leq |y|$ and accepts iff M accepts all of them.

Our description of N ensures that if M accepts Σ^* then N accepts all string of the form 0^n1^n; if M does not accept Σ^* then N will not accept all strings of the form 0^n1^n. This description of N is exactly the behavior we needed to achieve a reduction $A \leq B$.