A reduction from set A to set B is a computable function $\sigma : A \rightarrow B$ such that

$$x \in A \iff \sigma(x) \in B.$$

If A reduces to B via σ we write $A \leq_{\sigma} B$.

We use reductions to prove certain sets are not recursive or not r.e. In class we showed:

1. If $A \leq B$ and A is not recursive, then B is not recursive.
2. If $A \leq B$ and A is not r.e., then B is not r.e.

So if we have a set A that we know to be not recursive (e.g., $HP = \{M\#x \mid M \text{ halts on } x\}$) and we can reduce that set A to another set B, then we have shown B is not recursive. Similarly a reduction from a non-r.e. set A (e.g., $\overline{HP} = \{M\#x \mid M \text{ loops on } x\}$) to another set B would show that B is not r.e.

Use the technique of reduction for each of the following:

1. Let $ALL = \{M \mid L(M) \text{ accepts all strings}\}$. Show ALL is not recursive.

2. Let $REC = \{M \mid L(M) \text{ is recursive}\}$. Show REC is not r.e.

3. Let $INF = \{M \mid L(M) \text{ is infinite}\}$. Show INF is not r.e.

4. Let $REC = \{M \mid L(M) \text{ is recursive}\}$. Show REC is not recursive.

5. Let A and B be sets of Turing machines such that

$$A = \{M \mid L(M) = \Sigma^*\} \text{ and } B = \{N \mid L(N) = \{0^n1^n \mid n \geq 1\}\}.$$

Show that $A \leq B$.