1. Read Kozen Lectures 34–35. See the posted Reduction examples.

2. Tell whether the following problems are decidable or undecidable. Give a short justification for each (formal reduction not required).

(a) whether $L(M)$ is r.e., where M is a Turing machine
(b) whether $L(M) \cap \overline{L(M)} = \emptyset$, where M is a Turing machine
(c) whether $L(M) = L(M)^R$, where M is a Turing machine and $L(M)^R$ is the reverse of all the strings in $L(M)$.

3. Prove that the set of Turing machines

$$TOTAL = \{M \mid M \text{ halts on all inputs}\}$$

is not r.e.

Hint: Recall that $HP = \{M \# x \mid M \text{ halts on } x\}$ is r.e. but not recursive, so therefore \overline{HP} is not r.e. Show \overline{HP} reduces to $TOTAL$, i.e., describe a new machine $N = \sigma(M\#x)$ such that N halts on all inputs iff M does not halt on x.

4. Prove that the sets $A = \{M \mid M \text{ does not halt on } \epsilon\}$ and $B = \{M \mid L(M) = \emptyset\}$ are not r.e.

Hint: Reduce \overline{HP} to one of A or B, then reduce that set to the other one.

5. Prove that the set $B = \{M \mid M \text{ accepts at least 301 strings}\}$ is r.e. but not co-r.e. (that is, show B is an r.e. set but its complement \overline{B} is not r.e.).

6. Recall the linear bounded automata (LBAs) you defined formally as part of Homework 8. The LBAs are a restricted class of one-tape Turing machines that are not allowed to write on the tape outside of the input area. The input string is enclosed between left and right endmarkers, \upuparrows and \downdownarrows, and the machine is constrained never to move to the left of the \upuparrows nor to the right of the \downdownarrows. It can read and write all it wants between the endmarkers. Recall that on Homework 8 you proved the halting problem for LBAs is decidable.

(a) Prove by diagonalization that there exists a recursive set that is not accepted by any LBA.

(b) Prove that the emptiness problem for LBAs (given an LBA M, is $L(M) = \emptyset$?) is undecidable.