1. Read Kozen Lectures 1 - 4.

2. Give a deterministic finite automaton (DFA) for each of the following sets (a graph representation is sufficient):

 (a) the set of strings in \{a, b\}^* containing a substring of four consecutive b's;

 (b) the set of strings in \{a\}^* whose length is divisible by either 3 or 5;

 (c) the set of strings in \{0, 1\}^* containing an odd number of 0s and an even number of 1s;

 (d) the set of strings over \{a, b\} containing at least 2 occurrences of 3 consecutive a's, overlapping permitted (eg, the string aaaa should be accepted).

 (e) the set of strings in \{0, 1, 2\}^* that are ternary (base 3) representations, leading zeros permitted, of numbers that are not multiples of four. (Consider the null string a representation of zero.)

3. Let \(M = (Q, \Sigma, \delta, s, F) \) be a DFA. Prove that for all input strings \(x, y \) in \(\Sigma^* \) and states \(q \) in \(Q \),

\[
\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y).
\]

(Hint: Use induction on \(|y|\). You will need to use the definition of \(\hat{\delta} \).)

4. Regular expressions are a useful tool in a number of domains. In a short paragraph, describe in your own words the applicability of regular expressions. Give 2 specific examples of regular expression usage. One of your examples must be from a programming language that supports regular expressions – name the language, give an example regular expression, and what it achieves. The other example can be from a command-line or search bar, e.g., file name pattern matching.