Sample Proofs by Induction

1. See Rosen Section 5.1.

2. Adapted from *How to Prove It*, by Daniel Velleman

 Prove that, for \(n \geq 3 \), if \(n \) distinct points on a circle are connected in consecutive order with straight lines, then the interior angles of the resulting polygon add up to \((n - 2)180^\circ\).

 Proof:

 By induction on \(n \). \(P(n) \) is the proposition that if \(n \) distinct points on a circle are connected in consecutive order with straight lines, then the interior angles of the resulting polygon add up to \((n - 2)180^\circ\).

 Base case. \(P(3) \): If 3 distinct points on a circle are connected with straight lines, then the resulting polygon is a triangle, and we know that the interior angles of a triangle add up to \(180^\circ\).

 Inductive step: Show that \(P(k) \implies P(k + 1) \). We assume the inductive hypothesis, \(P(k) \) and must show that \(P(k + 1) \) follows from it. To be explicit, \(P(k + 1) \) is the proposition that if \(k + 1 \) distinct points on a circle are connected in consecutive order with straight lines, then the interior angles of the resulting polygon add up to \(((k + 1) - 2)180^\circ\).

 Consider the polygon \(P \) formed by connecting some \(k + 1 \) distinct points \(A_1, A_2, \ldots, A_{k+1} \) on a circle. If we skip the last point \(A_{k+1} \), then we get a polygon \(P' \) with only \(k \) vertices, and by the induction hypothesis the interior angles of this polygon add up to \((k - 2)180^\circ\). Now, the sum of the interior angles of \(P \) is equal to the sum of the interior angles of \(P' \) plus the sum of the interior angles of the triangle \(A_1A_kA_{k+1} \). Since the sum of the interior angles of the triangle is \(180^\circ\), we can conclude that the sum of the interior angles of \(P \) is

 \[(k - 2)180^\circ + 180^\circ = ((k + 1) - 2)180^\circ,\]

 as required.

 Having shown both the base case and inductive step, we have proven the claim.