
CS150 – Sample Final

Name: Section: A / B

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use
(1) the final “cheat sheet” from the course page, and (2) a single double-sided sheet of notes. You
have 3 hours. Read the problem descriptions carefully and write your answers clearly and legibly
in the space provided. Circle or otherwise indicate your answer if it might not be easily identified.
You may use extra sheets of paper, stapled to your exam, if you need more room, as long as the
problem number is clearly labeled and your name is on the paper. If you attached extra sheets
indicate on your main exam paper to look for the extra sheets for that problem.

You do not need to include comments, docstrings or constants in your code.

1: Odds and Ends X

2: Vector execution X

3: Dictionaries X

4: Recursion X

5: We’ve got problems X

6: Sequences X

Total X

1

1. [X points] Odds and Ends

(a) [X pts] Indicate whether each of the following statements are True or False.

For all possible inputs merge sort has lower asymptotic time complexity than
selection sort.

01101 in binary is equal to 13.

All columns in a pandas DataFrame must have the same type.

If we typed the two first statements below, s would have the value shown below:

>>> s = "this is a test"

>>> s.upper()

’THIS IS A TEST’

>>> s

’THIS IS A TEST’

For an O(n2) algorithm, if the algorithm takes 10 seconds to run on 1000 items
we would expect it to take approximately 40 seconds on 2000 items.

(b) [X pts] Add the following two binary numbers: 01101101 with 00111101 assuming they
both are unsigned positive integers. Show your work (including all carries) and verify
your answer by converting both numbers and their sum to decimal.

2

(c) [X pts] Given the following code in a file called my file.py:

if __name__ == "__main__":

print("bananas " * 2)

else:

print("apples"[:-3])

print("End of " + __name__)

i. What would be printed if the file were run by clicking on the green arrow?

ii. What would be printed if we executed import my_file in the Python shell?

(d) [X pts] The xor (exclusive or) of two boolean values is True if either value is True, but
is False if they are both True or both False. The following is the “truth table” for xor:

a b xor(a, b)

False False False
False True True
True False True
True True False

Write a function xor that calculates the exclusive or of two boolean variables. Remember
to use good boolean style!

3

2. [X points] Vector execution

(a) [X pts] In the following R code, assume a and b are equal-length vectors of numbers.

mystery <- function(a, b) {

sum(a * b)

}

i. Rewrite the above code in Python using NumPy and/or pandas as appropriate
assuming that a and b are lists of floats. You will be evaluated based on the efficiency
and conciseness of your approach.

ii. Rewrite the above code in Python using only built-in functions assuming that a and
b are lists of floats. You will be evaluated based on the efficiency and conciseness of
your approach.

(b) [X pts] Which of the above implementations has the smallest Big-O asymptotic time
complexity?

4

3. [X points] Dictionaries

(a) [X pts] Write a function named dictionary add that takes two dictionaries whose val-
ues are numbers and returns a dictionary containing the keys found in both dictionaries.
The value associated with these keys should be the sum of the values in the two dictio-
naries. If a key does not occur in BOTH dictionaries, then it should not occur in the
returned dictionary. For example:

>>> d1 = {"a": 1, "b": 2, "c": 3}

>>> d2 = {"a": 4, "c": 5, "d": 6}

>>> dictionary_add(d1, d2)

{'a': 5, 'c': 8}

(b) [X pts] In one sentence, what does the following function do if dict1 and dict2 are
dictionaries? Be concise but precise.

def mystery(dict1, dict2):

for key in dict1:

if not key in dict2:

return False

return True

5

4. [X points] Recursion

(a) [X pts] Draw the image that would be created by the above code if invoked as mystery(80, 5).
Assume that the turtle is initially at the origin, facing right. Annotate your drawing
with the final turtle location and orientation.

from turtle import *

def mystery(length, levels):

if levels == 0:

dot()

else:

forward(length)

left(90)

mystery(length/2, levels-1)

right(90)

backward(length)

6

(b) [X pts] What does the following function return when invoked with "CS class" as its
argument?

def mystery(s):

if s == "":

return s

else:

if s[0].isupper():

return s[0].lower() + mystery(s[1:])

else:

return s[0].upper() + mystery(s[1:])

(c) [X pts] Write a recursive function named sum_squared that takes a list of numbers as
a parameter and returns the sum of the each of the numbers squared. For example,
sum_squared([1, 2, 3]) would return 14 (that is, 1 ∗ 1 + 2 ∗ 2 + 3 ∗ 3 = 14).

7

5. [X points] We’ve got problems...

(a) [X pts] The following program expects two command-line arguments. The program is
supposed to print the usage if the user doesn’t supply exactly two arguments, or run
the function my_function(...) if the user does supply two arguments. However, the
program has a runtime error and logical error. Fix both problems so that it works as
expected. You don’t have to rewrite the function, just mark-up the one below.

import sys

def my_function(a, b):

some function stuff

def print_usage():

print("my_program.py <number> <number>")

number1 = sys.argv[0]

number2 = sys.argv[1]

if len(sys.argv) != 2:

print_usage()

else:

my_function(number1, number2)

(b) [X pts] The following function attempts to check if a number is prime or not, but it has
a logical error. Correct the function:

import math

def isprime(num):

"""Returns True if the input is a prime number, False otherwise"""

for i in range(2, int(math.sqrt(num)+1)):

if num % i == 0:

return False

else:

return True

8

6. [X points] Sequences

(a) [X pts] Write a function named unique that takes a string as a parameter and returns
True if all of the characters in the string are unique (i.e no repeats) or False if there are
duplicate letters. You will be evaluated based on the efficiency and conciseness of your
approach.

(b) [X pts] Write a function name reverse_sentence that takes a string representing a
sentence as a parameter and returns a new string where all the words in the sentence
are in reverse order. You can assume a “word” is anything separated by a space. For
example:

>>> reverse_sentence("this is a sentence")

’sentence a is this’

9

