1. [14 points] Warming up

(a) [2 points] List at least three kinds of information that should be in a function docstring.

i. A brief description of the computation the function performs
ii. What is expected for each of the parameters (if any)
iii. The return value (if any)

(b) [4 points] Quick coding: A “double fifteen” domino set has 0-15 dots inclusive (i.e.
including 0 and 15) on each side of the dominos. Write a function named domino that
returns a random domino as a string with a “|” separating the sides. For example:

>>> domino () from random import randint

0l4 def domino():

>>> domino () return str(randint(0,15)) + "|" + str(randint(0,15))
12112

>>> domino ()

1510

(c) [8 points] Quick coding: Write two functions, one using a for loop and the other using
a while loop, to print the even numbers from 1 to 10 inclusive, one number per line.

def forloop(): def whileloopQ):
for i in range(2, 11, 2): i=2
print (i) while i <= 10:
print (i)
i+= 2

2. [12 points] Slice and dice

Given the variables s and t with the following values:

>>> s

'simon says'

>>> t

'touch your nose'

Evaluate the following expressions and provide the resulting value.

(a) s[:6] + "didn't " + s[6:9]

"simon didn't say"

(b) s[:7].replace(" ", "'") + t[-5:]

"simon's nose"

(¢) ((t.split()[2][:2].capitalize() + "! ") * 5).strip()
'No! No! No! No! No!'

(d) s +" "+ t[1:6] + s[2::6] + t[-5:]

'simon says ouch my nose'

3. [8 points] Function calls

Consider the following Python code:

def bar(s):
print(s)
r = int(s)

def foo(s):
r = int(s)
for i in range(l, len(s)):
bar(s[::i])
return r

y = foo("2583")

After execution what is the value of y and what, if anything, is printed in the shell?
Printed in the shell:

25683

28

23

After execution y will be 2583.

4. [14 points] T/F

For each of the statements below state whether they are true or false.

False If 1t is a non-empty list, 1t [0] and 1t [:1] evaluate to same type

True 6%3 + 5//2 evaluates to 2

False If s = "pizza pie" then s[2] == s[-2] would evaluates to True
False 1ist("my pie".split()) evaluates to [’m’, ’y’, ’p’, ’i’, ’e’]
False The following two functions do the same thing:

def f(a, b):

return not a and b or False

def g(a, b):
return not (a and b)

True The following function would return the first position of a letter in a string:
def find first(letter, mystring):

i = mystring.find(letter)
return mystring.find(letter, i)

False Some, but not all, Python strings are immutable

5. [12 points] We've got problems

(a) [6 points] The function below has two integer parameters, a and b. The function works
correctly, however, it is too long and it uses bad coding style. Rewrite the function in
good style to be as concise as possible.

def could_be_better(a, b): def better(a, b):
if a > 5 and b >= -5: return a > 5 and b >= -5
return True
elif a == 6 and a ==

return False

elif b < -5 or a <= b5:
return False

else:
return True

(b) [6 points] The following function was designed to count the distinct characters in the
string parameter sentence. There are several problems with this code that will lead
to either Python errors or incorrect output. Describe two different problems (which are
not variations of the same issue).

def distinct(sentence):
sentence = sorted(sentence)
distinct = 0O
previous = ""
for letter in range(len(sentence)):
if letter != previous:
distinct =1
previous = letter
return distinct

i. distinct is re-assigned to be 1 instead of incremented by one, should be distinct
+= 1.

ii. letter is an integer, but is being compared to a string, previous (which will always
be False). The loop should be for letter in sentence

6. [16 points] Coding

You want to identify the US zip code with the largest income gap. You are provided with text
files for every zip code, one file per zip code, e.g. 05753.txt, which list the income of every
resident (including cents); one income per line. Every file has at least one entry. Write a
Python function named income_gap that returns the filename containing the largest difference
between the highest and lowest income. Your function should have a single parameter, a list
of file names as strings, and return one of those filenames as a string. Your code need not be
a single function, you can write other functions to be invoked from income_gap.

>>> income_gap(["05753.txt", "05443.txt", "05456.txt"])
05753.txt

An example file, e.g. “05753.txt”:

35000.30
73250.00
47500

def read_file(filename):
with open(filename, "r") as file:
incomes = []
for line in file:
incomes.append(float(line))
return incomes

def income_gap(files):
max_gap = O
max_file = files[0]
for file in files:
incomes = read_file(file)
gap = max(incomes) - min(incomes)
if gap > max_gap:
max_gap = gap
max_file = file

return max_file

7. [10 points] Turtle fun

from turtle import *

def shape(side):
forward(side)
right (180)
forward(side)
right (180)

side = 100

while side <= 300:
shape(side)
right (45)
side += 50

done ()

Draw the image that would be created by the above code and label your drawing with relevant
dimensions, e.g. lengths of lines. Assume that the turtle is initially at the origin, facing right.

