1 Summation Notation

When we wish to make a sum of many number, the following notation is used:

\[\sum_{i=1}^{n} f(i) := f(1) + f(2) + f(3) + \ldots + f(n-1) + f(n). \]

In summation notation, as this is called, the variable \(i \) is an integer and the function \(f \) is evaluated at all integers between the lower and upper summation limits.

Examples:
1. \(\sum_{3}^{5} i^2 = 3^2 + 4^2 + 5^2 = 50 \)
2. \(\sum_{1}^{10} i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 \)
3. \(\sum_{1}^{3} 1 + 1 + 1 = 3 \)
4. \(\sum_{0}^{2} \sin(i \frac{\pi}{2}) = \sin(0) + \sin(\frac{\pi}{2}) + \sin(\pi) = 1 \)

2 Summation Properties

- **Constant** \(\sum_{i=1}^{n} c = nc \)
- **Additivity** \(\sum_{i=1}^{n} f(i) + g(i) = \sum_{i=1}^{n} f(i) + \sum_{i=1}^{n} g(i) \)
- **Linearity** \(\sum_{i=1}^{n} af(i) + bg(i) = a \sum_{i=1}^{n} f(i) + b \sum_{i=1}^{n} g(i) \)
- **Constant Multiple** \(\sum_{i=1}^{n} cf(i) = c \sum_{i=1}^{n} f(i) \)
- **Summation Limits** \(\sum_{i=a}^{b} f(i) + \sum_{i=b+1}^{c} f(i) = \sum_{i=a}^{c} f(i) \)
- **Monotonicity** If \(f(i) \leq g(i) \) for each \(i \) then \(\sum_{i=a}^{b} f(i) \leq \sum_{i=a}^{b} g(i) \)

Examples:
1. For \(i \geq 3, i^2 \geq 9 \), therefore \(\sum_{3}^{10} 3 = 3(10 - 2) \leq \sum_{3}^{10} i^2 \)

3 Special Summations

- **Constant** \(\sum_{i=1}^{n} c = nc \)
- \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)
- \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \)
- \(\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2} \right)^2 \)

Examples:
1. \(\sum_{1}^{n} 2i - 3i^2 = 2 \sum_{i=1}^{n} i - 3 \sum_{i=1}^{n} i^2 = 2 \frac{n(n+1)}{2} - 3 \frac{n(n+1)(2n+1)}{6} \)
4 Area Computation by Regular Partitions

To find the area of the region bounded by the graph \(y = f(x) \) (with \(f(x) \geq 0 \)), the vertical lines \(x = a \) and \(x = b \) and the x-axis (that is, the area under the curve \(y = f(x) \) between \(a \) and \(b \)), proceed as follows:

1. Subdivide the interval \([a, b]\) into \(n \) subintervals \([x_{i-1}, x_i]\), of equal width \(\Delta x = \frac{b-a}{n} \). The endpoints \(x_i = a + i\Delta x \).

2. In each interval, determine a point \(x_i^* \) by a prescribed method. For example, for circumscribed rectangles choose \(x_i^* \) equal to the point where the absolute maximum of \(f \) occurs in the interval (assuming \(f \) is continuous.)

3. Form the approximation to the area using the Riemann sum,

\[
\sum_{i=1}^{n} f(x_i^*) \Delta x
\]

and simplify using summation formulae.

4. Find the limit as \(n \) “goes to infinity.”

If \(f \) is a continuous function, this limit exists and is called the \textit{definite integral of} \(f \) \textit{from} \(a \) \textit{to} \(b \) and denoted:

\[
\int_{a}^{b} f
\]

5 Exercise

Find the area under the curve \(y = x^2 + x \) from \(x = 1 \) to \(x = 2 \) using the method of regular partitions and circumscribed rectangles.