ex. (3) \[T(n) = \begin{cases} d & \text{for } n = 1 \\ 2T\left(\frac{n}{2}\right) + 1 & \text{for } n > 2 \end{cases} \]

1. Guess \(O(1) \), so \(f(n) = 1 \).

2. (a) Base Case:
 Find \(c \) s.t. \(T(2) \leq cf(2) \)
 \[T(2) \leq c \]
 \[2T\left(\frac{2}{2}\right) \leq c \]
 \[2d + 1 \leq c \]

 \(\therefore \) any \(c \geq 2d + 1 \) works for Base Case.

(b) Assume true up to \(k \)
 \[T(k) \leq cf(k) \leq c \]
 Set \(k = \frac{n}{2} \)

\(\mathbf{\therefore} T\left(\frac{n}{2}\right) \leq c \)

(c) Find \(c > 0 \) s.t. \(T(n) \leq cf(n) \) for all \(n > 0 \)

From rec.: \(T(n) = 2T\left(\frac{n}{2}\right) \)
From \((b)\) \[\leq 2c \]

Find \(c > 0 \) s.t. \(2c \leq cf(n) = c \)

\(\therefore \) No \(c \) exists!
Let's put this all together

Recursive function:

\[
function(A, x) \quad // A[1..n] is list, x is some value
\]

\[
\quad \text{if } |A| = 0 \\
\quad \quad \text{return } \text{false}
\]

\[
\quad \text{else if } A[1] = x \\
\quad \quad \text{return } \text{true}
\]

\[
\quad \text{else} \\
\quad \quad \text{return } (A[2..n], x)
\]

Recurrence:

\[
T(n) = \begin{cases}
T(n-1) + d & \text{for } n \geq 1 \\
\quad d' & \text{for } n = 0, \ldots, 1
\end{cases}
\]

Solve? Master's? Does not apply!

Tree:

\[
T(n-1) \quad d \quad d \\
\quad \text{# levels?} \\
T(n-2) \quad d
\]

Time: $d^n = \Theta(n)$
Substitution Method for $T(n) = T(n-1) + d$

1. **Guess** $f(n) = n$

Show $\exists c > 0$ s.t. $T(n) \leq c \cdot n$

2. (a) **Base Case**

 Smallest n with recursion? $n = 1$.

 Find c s.t. $T(1) \leq c(1)$, $T(2) \leq c(2)$

 \[T(1-1) + d \leq c, \quad T(2-1) + d \leq 2c \]

 \[2d \leq c \quad 2d \leq 2c \]

(b) **Ind. Hyp.** $T(k) \leq ck$ for $k < n$

Choose $k = n-1$. $\Rightarrow T(n-1) \leq c(n-1)$

(c) $T(n) = T(n-1) + d$ (from recurrence)

\[\leq c(n-1) + d \] (from (b))

\[T(n) \leq cn - c + d \]

When is $\frac{d}{c} \leq cn$?

\[cp - c + d \leq cn \]

\[d \leq c \]

For all $c \geq d$

Final: c: any value $\geq 2d$
Next topic: Probabilistic Analysis, Randomized Algorithm.

Selection Problem: Find the k-th smallest number in a list of n numbers (Assume distinct numbers)

ex: 19 13 18 12 17 16 15, k = 6 => ans = 18

Simple solution?
- Sort list, return k-th element. \(\Rightarrow O(n \log n) \)

can actually be solved in \(O(n) \)!
Problem is similar to finding min/max
Seems harder, but is surprisingly, (computationally) just as easy!

Algorithm is similar to Quicksort

Quick Quicksort review (overview on slides)

ex: 19 13 18 12 17 16 15

"move pivot out of the way"

12 13 15 19 17 16 18

move i right,

12 13 15 19 17 16 18

move j left until

\[\begin{array}{c}
Q5C \quad Q5C
\end{array} \]

\[\begin{array}{c}
L > \text{pivot and } A_{i} \quad A_{j} < \text{pivot}
\end{array} \]

(1) Choose a pivot, ex 15

"swap"
(2) Partition list around pivot into L, G
 "How?" Go to previous page.

(3) Recursively call quicksort on L and G

Time: \(\theta(\text{Partition}) \times \# \text{Partitions} \)
 \(= \big{O(n^2)} \times ? \)

\# Partitions:
 worst-case: \(\big{O(n^2)} \): if pivot is always largest/smallest

ex: pivot = 19 \(\rightarrow \) 13, 18, 12, 16, 17, 15, 19
 (largest)

 (pivot)

pivot = 12 \(\rightarrow \) 12, 18, 13, 16, 17, 15
 (smallest)

Each partition is around only 1 element, so list size is decreased
list size by 1 each time: so \(n-1 \) partitions \(\Rightarrow \) total time: \(\big{O(n^2)} \)

How to avoid?

- more random choice of pivot. ex: pivot = 15,
 Typically randomly chosen pivot will be a number whose value
 is in middle.

Can also achieve with median of 3: ex. \(\text{MedOf3}(19, 12, 15) = 15 \)

average case: pivot chosen so each partition splits list
roughly in half: \(O(\log n) \) partitions \(\Rightarrow \) total time \(= O(n \log n) \).
ex: \(cn \)
\[
\begin{array}{c}
\text{\(\frac{cn}{2} \)} \\
\end{array}
\]

Partitioning at each level: \(O(n) \)

\# levels: \(O(\log n) \)

\(n \) to \(1, \frac{1}{2}, \ldots \) each time.

Anything useful here for Selection Problem?

Notice! After partition, all elements:
- left of pivot < pivot,
- right " > pivot

Can find the \(k \)-th smallest by looking at size of \(L \) (or \(G \))

Specifically:
- if \(|L| = k-1 \), pivot is \(k \)-th smallest \((k-1=4) \)
- if \(|L| > k-1 \), \(k \)-th smallest in \(L \) // \(|L| \geq k \)
- if \(|L| < k-1 \), \(k \)-th smallest \(\leq G \)

* \(k \)-th smallest

Why is this faster (i.e. \(O(n) \)) than \(O(n\log n) \) (assuming "good" pivot)?

\(\Rightarrow \) After a partition, we consider only \(\frac{1}{2} \) the list (vs. both \(\frac{1}{2} \))
Rand-Select (A, k) // Returns kth smallest number in list
// A of distinct integers

1. Choose a pivot, p, at random from A.
2. Partition A into 2 sublists L, G:
 \[L = \text{all elements} < p\]
 \[G = \text{all elements} > p\]
3. If (\|L\| = k-1), // k-1 elements are smaller than p.
 \[\text{return } p\]
 else if (\|L\| > k-1) // (\|L\| < k) L contains the kth smallest
 \[\text{return Rand-Select (L, k)}\]
 else // (\|L\| < k-1) G contains kth smallest
 \[\text{return Rand-Select (G, 2 \cdot k - \|L\| - 1)}\]

\[K \text{ needs to change! update } k \text{ by removing all elements in } L \text{ and the pivot}\]

\[\text{ex: } A = 19 \ 13 \ 18 \ 12 \ 17 \ 16 \ 15 \ \ k = 6, \ \text{Ans: } 18\]

\(p=15\)
\(k=5\)
\(\underbrace{12\ 13\ 15}_{L} \ 19\ 17\ 16\ 18\)
\(\underbrace{19\ 17\ 16\ 18}_{G}\)
\(\|L\| = 2 < k-1\)

Now recurse on G to find \(6-2-1 = 3\text{^rd smallest}\) in G \(\Rightarrow 1\&\)