Graphs have many applications outside of networks.

⇒ Scheduling courses to satisfy a track in major (e.g. systems)

Courses with pre-reqs: 200, 201 ⇆ 101, 150, 190
302 ⇆ 200, 201

node ~ course

edge \((u,v) \) if \(u \) is a pre-req for \(v \)

![Graph diagram]

Ordering of courses to take?

\[\text{exs': } 101, 201, 202, 315, 431, 701 \] \[\text{More than one} \]
\[150, 201, 202, 311, 455, 701 \] \[\text{correct solution!} \]

"What must be true about graph?"
- Directed
- No cycles

Topological sort - in a directed acyclic graph (DAG), an ordering of vertices s.t. each edge is directed towards later vertex.
Not obvious for all graphs:

How to find ordering?

Hint: indegree of vertex v: number of edges (uv) (incoming edges to v).

ex: indegree of $A = 0$, $B = 0$, $C = 5$, etc.

"Which node(s) should be output first?"

\rightarrow Those with indegree = 0

Which node(s) """" second?"

Hint: Look back at course graph and consider deleting nodes/edges.

\rightarrow Those that have indegree = 0 after deleting the first set of output nodes and their outgoing edges.

1st: these
Note: Since graph is acyclic, there will always be some node with indegree = 0.

If (by assumption) all nodes had indegree > 0:

\[\text{if this edge connects to } a \text{ or } b \text{, there will be a cycle.} \]

Top-Sort-Print (T):

1. Until all vertices printed:
2. Look for a non-printed vertex, \(u \), with indegree = 0
3. Print \(u \)
4. ("Delete" \(u \)): Decrement indegrees of nodes adjacent to \(u \).

Ex.:

```
(101) → (201) → (202)
(150) → (190)
```

Print: \((101, 150, 190, 201, 202) \ldots \)

Run Time: \(O(|V|, |E|) = O(|V|^2) \)
How can we make this faster?

Notice in every step, we update indegrees and look for node with indegree = 0.

When a node has indegree = 0, store it to be next node to be deleted. Store in queue.

TopSort (G) // G=(V, E). Prints nodes of G in top-sort order
1. For all \(v \in V \)
2. \(\text{if (v.indegree == 0)} \)
3. \(Q.enqueue(v) \)
4. while \(Q.empty() \) \(\rightarrow O(1) \)
5. \(u = Q.dequeue() \)
6. \(\text{print}(u) \)
7. \(\text{// decrement indegrees of neighbors for all neighbors, } v, \text{ of } u \) \(\rightarrow O(|E|) \)
8. \(v.indegree-- \)
9. \(\text{if (v.indegree == 0)} \)
10. \(Q.enqueue(v) \).

\[\begin{align*}
 A & \rightarrow D \\
 C & \rightarrow B \\
 G & \rightarrow C \\
 D & \rightarrow G \\
 E & \rightarrow G
\end{align*} \]

Printed: A B E F G D C
Run-Time:
Steps 1-3: \(O(1V_1) \)
Steps 4-10: \(O(1V_1) + (\text{not } *) O(1E) \)

Consider each vertex linear \# times, each edge once: \(O(1V_1 + 1E) \)

Turns out, can use top-sort to find shortest paths in DAG's more efficiently than Dijkstra's and Bellman-Ford.

Even for DAGs with negative edge weights.

First consider DAGs with positive edge weights.

How does top-sort ordering help?
Consider nodes in top-sort order.

DAG vs. non-DAG:

For DAGs: a node earlier in the top-sort order is guaranteed to have shorter distance from s.

For non-DAGs, cycles prevent a similar guarantee (e.g. \(s \rightarrow a \) dist = 2).

How does this help over Dijkstra's?

(Recall: Dijkstra's uses minHeap to find next node to process (unprocessed node with min distance).

⇒ Put nodes in top-sort order (in a queue) and process nodes in this order!

Ques: Does this work for graphs with negative edge weights?
Yes' Recall problem with neg. edge weights and Dijkstra's was that a future (unprocessed) node could possibly improve distance to an already processed node:

![Diagram]

a processed before b but a.dist can be improved to 0 via b.

If nodes are processed in top-sort order, there are no paths from future nodes to previous nodes.

Top-sort order:

![Diagram]
TopSort - SP (G, s) // G is DAG : (V, E), $s \in V$

// Finds shortest paths u from s to all other nodes:

1. $Q = \text{TopSort}(V, E)$ //store vertices in top sort order
2. for all $v \in V$, v dist = ∞, v pred = null. (no more 'processed
3. s. dist = 0
4. while (! Q. empty)
5. $u = Q$. dequeue() (6) \rightarrow (5)
6. for each edge (u, v)
7. update (u, v) -> if (v. dist > u. dist + $w_{u,v}$)
8. v. dist = u. dist + $w_{u,v}$
9. v. pred = u

ex : TopSort - SP (G, s)

\[\begin{array}{c}
\text{Top Sort order} \\
(3) \rightarrow (6) \rightarrow (2) \rightarrow (1) \rightarrow (5) \rightarrow (4) \rightarrow (1) \rightarrow (7) \rightarrow (1) \rightarrow (5) \\
\end{array}\]

\[\begin{array}{c}
\text{Q:} \\
\{r, s, t, x, y\} \\
\end{array}\]

r is "thrown" away (can't get to it):
Run Time: Step 1 (Top-Sort): $O(1V_1 + 1E_1)$
Steps 2-3: $O(1V_1)$
Steps 4-7: $O(1V_1) + (\text{not +}) = O(1E)$

Total: $O(2(1V_1 + 1E_1)) = O(1V_1 + 1E_1)$ vs. $O(1V_1 \log 1V_1 + 1E_1 \log 1V_1)$ for Dijkstra’s, $O(1V_1 \cdot 1E_1)$ for BF.

<Can SKIP the rest>

Correctness:
When u is dequeued, u's dist is correct distance to u:
1. Only edges (v,u) where v comes before u in the toposort order can improve the distance to u.
2. Algorithm finds optimal distance to all such nodes before setting distance for u.

 Distance to u must be optimal.

Why processed not needed:

Cyclic

u most recently deleted:

Acyclic (nodes deleted in toposort order)

u most recently deleted

edge (u,v) exists where v's dist < u's dist so don't have $\text{dist} > u$'s dist
update v.