Goal: Find shortest paths from source s to all other nodes in G where G is:
- directed
- weighted (positive weights): \(w_{uv} \geq 0 \) for all \((u,v)\in E\)

Let's start with unweighted version.

- Steps 1, 2 remain the same.

- Step 3: can we still use a queue?

- Why did we use a queue to store nodes in unweighted case?

```
  S -> X -> Y
```

- \(u, X\) visited before \(y\) so should process (set their distances) before \(y\)’s.

- Nodes should be processed (have their distances set) in the same order they are visited.

"Queue is FIFO so allows for first-node-visited to be first-node-processed."

True for weighted?

No!
For weighted:

\[u \rightarrow x \rightarrow y \]

\[\text{y (and x) visited before y, but we should process y before u. Why?} \]

\[\text{An edge from y may lead to a better distance to u.} \]

"So can't process nodes in the order they are visited. Which node should get processed next?"

* \(\Rightarrow \) Process node with minimum distance.

ex: process s, x, y, u.

"Can't use a queue anymore, so how to get node with minimum distance?"

* Store nodes in a Min-Binary-Heap ordered by dist

(\(\Rightarrow \) update code. (4 changes))
Back to unweighted code.

Step 7: if \(u_{\text{dist}} = \infty \)

For unweighted:

When we update a node's distance, will that distance ever change? No.

A node u is processed if u-dist is the final (shortest) distance to u.

⇒ In unweighted, when u-dist is updated, u is processed (update just once).

What about weighted?

When we update u-dist, v-dist can that distance ever change? Yes!

\(u_{\text{dist}} \) can be improved to 7.
When should we update a node's distance?
How to modify Step 7 (and 8)?

⇒ if \(u \text{. dist} > v \text{. dist} + w_{v,u} \)
 \[u \text{. dist} = v \text{. dist} + w_{v,u} \]

< Modify code >

Ques: For weighted, when is a node \(u \) processed
⇒ When \(u \) deleted from VHeap, \(u \) is processed
 (will prove later). Intuitively, no unprocessed
 node can improve \(u \text{. dist} \) since \(\text{dist} \) of all
 unprocessed nodes \(> u \text{. dist} \).

This will help to optimize (make more efficient)
 the code.

Another change: Problem with step 9?

" \(u \) may be updated multiple times and Step 9
 makes us reinser \(u \) into VHeap each time"

"So update \(u \)'s distance
 Then check if \(u \) in VHeap.
 If no, insert with new distance"
One more change...

Recall: when a node is deleted from VHeap, its distance is set.

How does this help to make algorithm more efficient?

Keep variable 'processed' for each node.
- Initialize to false
- When a node deleted, set processed to true
- Update dist only if not processed
/* Finds shortest paths from s to every other vertex in G */

Dijkstra's (G, s) // G = (V, E) where w_{u,v} > 0 for all (u,v) ∈ E

1. For all v ∈ V : v.dist = ∞, v.processed = false
2. s.dist = 0, s.processed = true
3. // For all v ∈ V, v.pred = null

4. VHeap.insert(s) // VHeap is min Binary Heap
 // ordered by dist

5. while (VHeap not empty):
6. v = VHeap.deleteMin()
7. v.processed = true
8. // For each neighbor u of v:
9. if (!u.processed and u.dist > v.dist + w_{v,u})
10. u.dist = v.dist + w_{v,u} // VHeap updated
11. u.pred = v
12. if (VHeap does not contain u):
13. VHeap.insert(u)

Note: In Step 6, VHeap is updated with
 VHeap.updateKey(u, v.dist + w_{v,u})
Code gives distances only. How to find paths?

\begin{align*}
\text{from } x & \quad \text{from } y \quad \text{from } z \\
& 110 \quad 20 \quad 55 \\
\end{align*}

Keep variable \text{pred} updated. Update \text{u.pred} when \text{u.dist} is updated.

\text{Add to code:}

\begin{itemize}
\item \text{ex'}
\end{itemize}

\begin{align*}
v & = s \ b \ d \ a \ c \\
\text{pred} & = \emptyset \ s \ b \ s \ d \\
\end{align*}

How to get shortest path from \(s \) to \(x \)?

Start from \(x \)

Check \text{pred} until \text{pred} = \text{null}.
void getPath(x) //returns shortest s-x path
 P = x //path
 while (x, pred != null)
 P = P * x, pred
 x = x, pred

 return (reverse (P))

ex: get Path (c)

x = c, d, b, s
P = c * d * b * s
v = \{ a, c, b, e \}
\text{pred = null}
\text{shortest s-e path?}
\text{shortest s-d path?}
\text{runtime:} \quad \text{in terms of} \ n, \ e
\Rightarrow \text{recall: min binary heap to store vertices.}
\begin{align*}
\text{steps 1-3: } & O(n) \\
\text{step 4: } & O(\log n) \\
\text{5: } & O(n) \times \text{times} \\
\text{6: } & O(\log n) \\
\text{7: } & O(1) \\
\text{8: } & O(e) \times \text{times} \\
\text{9: } & O(1) \\
10. & O(\log n) \quad \text{(decrease-key()) considered exactly once.} \\
11. & O(1) \\
12-13. & O(1) \\
\end{align*}
\text{total:}
\begin{align*}
& O(n) + \\
& O(n) + \\
& O(1) + \\
& O(e) + \\
& O(1) + \\
& O(1) \\
& \text{not } O(n! \cdot e!)} \\
& \text{since each edge} \\
& \text{considered exactly once.}