Graphs - used to model pairwise relations between entities.

\[\text{Graph } G = (V, E) \]
\[V : \text{vertices/nodes} \]
\[E : \text{edges/arcs/links} \]
\[(u, v) \text{ where } u, v \in V \]

"Nodes ~ cities"

"Edges ~ roads"

Undirected graph - no particular ordering of vertices of an edge.

Vertices: \(V = \{a, b, c, d, e\} \)
Edges: \(E = \{a, b\}, (a, c), (b, c), (b, d), (b, e), (c, d), (d, e)\)

-or-

\(\{b, a\}, (c, a), (c, b), (d, b), (e, b), (d, c), (e, d)\)

-directed graphs - pair of vertices of an edge are ordered.

"Certain roads blocked off due to snow."

Edges: \(E = \{a, b\}, (b, c), (b, d), (c, a), (c, d), (d, e), (e, b)\)
adjacency (undirected): \(u \) is adjacent to \(v \) if \((u,v) \) or \((v,u) \) \(\in E \).

adjacency (directed): \(u \rightarrow v \) if \((u,v) \) \(\in E \). \(v \rightarrow u \).

path - sequence of vertices \(v_1, v_2, ..., v_n \) such that an edge exists for every adjacent pair in the sequence.

ex: \[P = c \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \equiv (c,a), (a,b), (b,c), (c,d), (d,e) \]

path length - number of edges in path.

ex: \(|P| = 5 \)

distance of vertices \(u, v = \) length of shortest path from \(u \) to \(v \).

ex: \(\text{dist of } c, b = 2 \)

(cycle - path of \(n \) vertices \(v_1, ..., v_n \) where \(v_1 = v_n \))

weighted graph - edges have weights/cost.

\(w_{u,v} \) = weight of edge \((u,v) \).

\[\begin{array}{c}
\text{(a)} \xrightarrow{10} \text{(b)} \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{(c)} \xrightarrow{3} \quad \text{(e)} \xrightarrow{4} \text{(d)} \xrightarrow{2} \text{(f)}
\end{array} \]

amount of time it takes to traverse the edge.

Can also have weighted undirected graphs.

edge \((b,c) \) exists if \(c \) is directly reachable from \(b \).
path length (weighted) = sum of weights on edges of the path

distance ~ still length of shortest path

weighted distance from c to b?

not \(c - a - b = 3 + 10 \)
but \(c - d - e - b = 2 + 2 + 1 = 5 \)

Notice distance from b to c = 4 + 5

How to represent/implement graphs?

Pairwise, so natural to use a matrix:

\[
A = \begin{bmatrix}
a & b & c & d & e & f \\
10 & - & - & - & - & - \\
4 & 5 & - & - & - & - \\
3 & - & 2 & - & - & - \\
- & - & 2 & - & - & - \\
- & 1 & - & - & - & - \\
- & - & - & - & - & - \\
\end{bmatrix}
\]

A of size \(|V| \times |V| \)

Problem? Space \(O(|V|^2) \)

Better for when graph is dense

dense graph - \(|E| \approx O(|V|^2)\)

typically graphs are \underline{spare}: \(|E| \approx O(|V|)\), so we use adjacency lists.

adjacency list: for each vertex, store a list of adjacent vertices (and weights)

\[
\begin{align*}
\text{a} & \rightarrow [b(10)] \\
\text{b} & \rightarrow [c(4), d(5)] \\
\text{c} & \rightarrow [a(5), d(2)] \\
\text{d} & \rightarrow [e(2)] \\
\text{e} & \rightarrow [b(1)] \\
\text{f} & \rightarrow [] \\
\end{align*}
\]

\text{Space: } O(|V| + |E|)

\text{Storing an entry for every node, storing every edge}

\text{Searching a graph}

\text{BFS: start at source, search 1 hop away, 2 hops away}

\begin{tikzpicture}
\node (a) at (0,0) {src};
\node (b) at (1,-1) {};
\node (c) at (2,-1) {};
\node (d) at (3,0) {};
\node (e) at (3,1) {};
\node (f) at (4,0) {};
\node (g) at (4,-1) {};
\node (h) at (5,0) {};
\node (i) at (5,1) {};
\draw (a) -- (b) node [midway, above] {};
\draw (a) -- (c) node [midway, above] {};
\draw (b) -- (d) node [midway, above] {};
\draw (c) -- (e) node [midway, above] {};
\draw (e) -- (f) node [midway, above] {};
\draw (e) -- (g) node [midway, above] {};
\draw (f) -- (h) node [midway, above] {};
\draw (h) -- (i) node [midway, above] {};
\end{tikzpicture}

\text{color nodes white - not discovered}
\text{gray - discovered}

\text{Pseudocode on next page}

Try on above example:

\begin{itemize}
\item \bigcirc - white
\item \bigotimes - gray
\end{itemize}

\text{BFS} (G, s, f)

\text{Q: } [s, e, f]
Run Time? \(|V|, |E| \)

- (s,a)
- (c,e)
- (c,h)
- (s,c)
- (c,h)

\[\begin{array}{cccc}
 s & a & c & b & e & h & f \\
 \hline
 & & & \uparrow & & \uparrow & \uparrow \\
 (0,5) \\
\end{array} \]

Notice every edge appears once

every node considered constant number of times

\[\Rightarrow \text{Total} \cdot O(|V| + |E|) \]

How to use BFS to find shortest paths in unweighted graphs?

Keep distance variable with each node.

Initially:
- \(s \) \(\text{dist} = 0 \)
- \(v \) \(\text{dist} = \infty \) (for all other verts)

Dequeue a node

When checking neighbors, if \(\text{dist} = \infty \) (hasn't been discovered yet), set \(\text{dist} = \text{dequeued node's dist} + 1 \)
BFS(G, s) //Searches G starting at s

1. For all v, v.color = white
2. s.color = gray
3. Q.enqueue(s)
4. while (Q not empty):
5. v = Q.dequeue()
6. for each neighbor u of v:
7. if u.color == white
8. u.color = gray
9. Q.enqueue(u)
if (first < second & first < last)
 A[0] = first
else if (second < first & second < last)
 A[0] = second
BFS-SP(G,s) // Finds shortest paths from s to all other nodes in unweighted graph G

1. For all v, v.dist = ∞
2. S.dist = 0
3. Q.enqueue(s)
4. while (Q not empty)
 5. v = Q.dequeue()
 6. for each neighbor u of v
 7. if (u.dist = ∞)
 8. u.dist = v.dist + 1
 9. Q.enqueue(u)

Q: s a d b e h f

How to modify this for weighted graphs?

Many changes...
Specifically:

Find shortest paths from source \(s \) to all other vertices in \(G \), where \(G \) is:

- directed
- weighted (positive weights), \(w_{uv} \geq 0 \) for all \((u,v) \in E\).

Differences btw unweighted and weighted?

Once we update a distance, what is possible to have time about that node?

\[\text{Possible to have } \]
\[\text{time about that node?} \]

\[\Rightarrow \text{We will never re-update } \]
\[\text{v's dist is set to 5} \]
\[\text{v's dist is set to 5} \]
\[\text{So we should update } u! \]

(Traversing an edge in the future cannot yield shorter path to v, u, x)
Difference #1

When to update u.dist?

For vertex x, with neighbor u: \(x \rightarrow u \)

If \(u \cdot \text{dist} > x \cdot \text{dist} + w_{x,u} \)

\[u \cdot \text{dist} = x \cdot \text{dist} + w_{x,u} \]

Another difference?

First, notice we process nodes in ascending order of distance. Why?

\(\Rightarrow \) Want to process a node that is closer to \(s \) before one that is further since the closer node may yield a shorter path to the farther one.

For unweighted, this means processing the next node \(v \) vs in the queue.

For weighted, should process \(x \) before \(u \).

For unweighted, this means

\[|v| u | x| \]

How to store nodes?

Min Binary Heap ordered by distance

Difference #2

Store nodes in Min Binary Heap ordered by distance.

Turns out (will prove later) when \(u \cdot \text{dist} \) is minimum distance of all non-processed nodes, \(u \cdot \text{dist} \) is shortest distance from \(s \) to \(u \).