Specifically:

Find shortest paths from source s to all other vertices in G, where G is:

- directed
- weighted (positive weights): $w_{u,v} > 0$ for all $(u,v) \in E$.

Differences between unweighted and weighted?

1. **unweighted**

 ![Diagram](image)

 Once we update a distance, what is possible to have true about that node?

 d_{15}

 d_{18}

 d_{12}

 \Rightarrow We will never re-update u's dist is set to 5

 v's dist is set to 6

 x's dist is set to 7

 \Rightarrow So we should update u!

 (Traversing an edge in the future cannot yield shorter path to v, u, x)
Difference #1

When to update \(u \text{ dist} \)?

For vertex \(x \), with neighbor \(u \):

\[
\begin{align*}
\text{If } u \text{ dist} &> x \text{ dist } + w_{x,u} \\
\text{then } u \text{ dist} &= x \text{ dist } + w_{x,u}
\end{align*}
\]

Another difference?

First, notice we process (i.e. set distance) nodes in ascending order of distance. Why?

\(\Rightarrow \) Want to process a node that is closer to \(s \) before one that is farther since the closer node may yield a shorter path to the farther one.

For unweighted, we visit nodes exactly in this order (1 hop away, 2 hops away, 3 hops away).

\[S \rightarrow u \rightarrow x \rightarrow \bar{s} \]

We visit nodes in the same order they should be processed so can use a queue to get next node to process.

\[S \rightarrow u \rightarrow x \rightarrow \bar{s} \]

Turns out (will prove later) when \(u \text{ dist} \) is minimum distance of all non-processed nodes, \(u \text{ dist} \) is shortest distance from \(s \) to \(u \).
For weighted:

We will visit \(u \) before \(y \) but we should process \(y \) first.

Can't use a queue anymore!

How to get node with minimum current distance?

Use Min Binary Heap!

Difference (2): Use Min Binary Heap to get the node with minimum

In general:

\[\text{Do not want to process } u \text{ before } y \text{ (even though we visit } u \text{ before } y) \]
"Keep variable 'processed' to keep track of when a node's distance is final.
\nFor all \(v \), \(v.dist = \infty \) for BFS-SP."

/* Finds shortest path distances from \(s \) to every other vertex in \(G \) *\/
Dijkstra's (\(G, s \)) // \(G = (V, E) \) \(w_{uv} \geq 0 \) for \((uv) \in E \)
1. For all \(v \in V \), \(v.dist = \infty \), \(v.processed = false \)
2. \(s.dist = 0 \), \(s.processed = true \)
3. For all \(v \), \(v.pred = \) null

// Distances are updated throughout, so store all nodes
4. \(Vheap = BuildHeap (V) \) // min binary heap of nodes
 // ordered by dist
5. While (!\(Vheap.\text{empty}() \))
6. \(v = Vheap.\text{deleteMin}() \)
7. \(v.processed = true \)
8. For (each neighbor \(u \) of \(v \)):
9. \(\text{if} (\! u.processed \text{ and } v.dist + w_{uv} < u.dist) \)
10. \(\{ \text{relaxation} \} \)
11. \(u.dist = v.dist + w_{uv} \) // heap gets updated
12. \(u.pred = v \)
13. updateKey \((u, v.dist + w_{uv})\)
This just gives distances, How to keep track of paths?

\[
\begin{pmatrix}
10 & 90 & 80 \\
20 & 30 & \text{\textcopyright} \\
\end{pmatrix}
\]

Keep variable \(\text{pred} \).
Update \(u \cdot \text{pred} \) when \(u \cdot \text{dist} \) updated.

< Add to code >

\[\text{ex:}\]

\[
\begin{pmatrix}
0 & 2 & 4 & 11 \\
5 & 2 & 9 & \text{\textcopyright} \\
\end{pmatrix}
\]

\(v = s \ b \ d \ a \ c \)
\(\text{pred: null} \ s \ b \ s \ d \)

- getPath(c)
 \(x = e \ d \ b \ s \)
 \(p = c \ast d \ast b \ast s \)

getPath(\(x \)) //return shortest s - x path
\[
\begin{align*}
P &= x \ //\ path \\
\text{while} (x \cdot \text{pred} \neq \text{null}) \\
P &= P \ast \ x \cdot \text{pred} \\
\text{concatenate} \\
X &= x \cdot \text{pred} \\
\text{return concatenе}(P)
\end{align*}
\]
\[\text{Recall Min Heap to store vertices.} \]

1-3: \(O(|V|) \)

4: \(O(|V|) \)

5-7: for each \(v \in V \), deleteMin: \(O(|V| \cdot \log |V|) \)

S-11: "" (\(uv \) \(\in \mathcal{E} \), update key \((u, v, \text{dist} + w(u, v)) \): \(O(|E| \cdot \log |V|) \)

Notice Step 8 does not occur \(|V| \) times, only \(|E| \) times.

Total: \(O(|V| + |V| \cdot \log |V| + |E| \cdot \log |V|) = O(|V| \log |V| + |E| \log |V|) \)