0-1 Knapsack - 3rd most useful problem (out of 75).

Cave, n bars of gold 1..n, each with weight w_i, value v_i. You have knapsack with weight limit W.

Goal: Choose bars to fill knapsack while maximizing sum of v_i.

Applications:

Choosing:

1. Shares of stocks to invest in w/ max budget.
 * Stocks ~ items (some stocks more valuable).
 * Budget ~ weight limit.

2. Questions to answer on exam w/ time limit.
 * Question ~ items (some questions worth more points).
 * Time limit ~ weight limit.

3. Ads to place on website w/ max space.
 * Ads ~ items
 * Space ~ weight limit.

Formally:

n items. For each item i, make a choice:

$x_i = 0$ if leaving item i.

$x_i = 1$ "taking" i.

Goal: Find x_i for that maximizes $\sum_{i=1}^{N} x_i v_i$ such that $\sum_{i=1}^{N} w_i x_i \leq W$.

\[
1 \leq i \leq N.
\]
Brute Force: $O(2^n)$: For each item, 2 choices: take or leave.

Greedy Ideas?
Sort by T and choose next item from list:
1. decreasing value
2. increasing weight
3. decreasing value/weight

3-item examples where greedy fails?

(1) $W = 10$ lbs

<table>
<thead>
<tr>
<th>10 lbs</th>
<th>5 lbs</th>
<th>5 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>90</td>
<td>80</td>
</tr>
</tbody>
</table>

Greedy = $G = 100$

$OPT = 170$

(2) $W = 10$ lbs

<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

$OPT = 100$

(3) $W = 50$

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

$G = 160$

$OPT = 220$

$\frac{V_i}{W_i} = 6, 5, 4$

None of the greedy ideas are optimal!

Optimal substructure property? Yes! \Rightarrow Dynamic Programming
ex. \(W = 5, n = 4 \) items

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>40</td>
</tr>
</tbody>
</table>

Solu: items 2, 4 value = 90.

Start by finding max value (instead of items).

Express solution to a subproblem in terms of subsolutions.

What is a subproblem? Imagine bars of gold are lined up. Entire problem: make decisions for all \(n \) bars. Sub-problem: make decisions for first, say \(i \) bars.

\(A[i] \): max value for first \(i \) items (with weight limit \(W \)).

\(A[i-1] \): max value for first \(i-1 \) items (with weight limit \(W \)).

Problem? If we decide to take item \(i \), then the weight limit for previous \(i-1 \) items is not \(W \) (weight limit is \(W - W_i \)).

\(\text{ex.} \quad \square \quad \square \quad \square \quad \square \quad \quad W = 100, \text{if we take } i, \text{items } i = 5 \text{ lbs} \quad \text{1...i-1 can weigh at most 95} \)
Therefore, D.P. formulation depends on 2 factors:
(1) # items (2) weight limit.

\[A[i,j] = \text{max value from first i items with weight limit } j. \]

D.P. Formulation:

For each item \(i \), we have a choice: take \(i \), or leave \(i \).

- Leave \(i \):
 \[A[i,j] = A[i-1,j] \]

 If we leave item \(i \), we have weight limit \(j \) for previous \(i-1 \) items.

Where in the matrix can we find the best value we can get for the first \(i-1 \) items and weight limit \(j \)?
take \(i \)? \(A[i, j] = v_i + \max \{ A[i-1, j-w_i] \} \)

If weight limit is \(j \) and we take item \(i \), previous \(i-1 \) items can weigh at most \(j - w_i \).

Where in \(A \) can we find best value for first \(i-1 \) items and weight limit \(j - w_i \)?

ex Suppose deciding on 5th item \((i=5)\), weight limit is 15 \((j=15)\).

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
\checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\end{array}
\]

\((5 \text{ lbs})\)

already made a decision for each of these, got some total value 100.

If we leave \(i \), value is still 100.

If we take \(i \), total weight of all items must be 15.
So \(i-1 \) items can weigh at most 10.
One more case: What if weight of current item exceeds current weight limit?
(ex: 5th item weighs 25 lbs?)

⇒ must leave item i!

\[
A[i,j] = \begin{cases}
0 & \text{if } i=0 \text{ or } j=0 \\
A[i-1,j] \text{ (leave)} & \text{if } i,j>0 \text{ and } w_i > j \quad \text{(A)} \\
\max \left\{
\begin{align*}
A[i-1,j] \text{ (leave)} \\
\text{(above 1)}
\end{align*}
\right. & \text{if } i,j>0, \\
v_i + A[i-1,j-w_i] \text{ (take)} & \text{if } w_i \leq j \quad \text{(B)}
\end{cases}
\]

1. Base Case?
2. How to fill A? \(A[0,0] = 0 \) \(A[0,n] = 0 \)
Then, nested for loop: for \(i = 1 \ldots n \), for \(j = 1 \ldots W \)
3. Where is value (max, value)? in \(A[n,W] \)
4. Run Time? \(O(nW) \)
5. Actual solution (optimal items)? <Later>