But we will discover this in a future computation.

ex: For \(\overline{X}_6 = B A C D N E \)

\[\begin{array}{c}
\overline{X}_5 \\
\overline{Y}_3 = B N E N \\
\end{array} \]

| LCS1 = 1 | new LCS = 2 |

LCS \((\overline{X}_6, \overline{Y}_3)\) computed after LCS \((\overline{X}_5, \overline{Y}_4)\).

Would match current \(N(x_5)\) with a previous \(N(y_2)\)

only if there is some future char in \(X\) that can be matched with a char in \(Y\)
(e.g. \(E\) in the example above).

But we would discover this in a future computation - e.g. when computing LCS \((\overline{X}_6, \overline{Y}_3)\)
in the example above (the matching \(E\)'s).

Case 2: \(x_i \neq y_j\)

\[\begin{array}{c}
X = B A C D E \\
Y = B D E B \\
\end{array} \]

\(LCS\) won't improve (from a previous computed LCS).

3 choices we can make for LCS \((\overline{X}_i, \overline{Y}_j)\)
3 choices we can make:

- **A**
 \[\text{LCS}(\overline{x_i}, \overline{y_j}) \]
 ends in \(x_i \)

 \[\begin{array}{c}
 x = \boxed{E} \\
 y = \boxed{E} \end{array} \]

- **B**
 \[\text{LCS}(\overline{x_i}, \overline{y_j}) \]
 ends in \(y_j \)

 \[\begin{array}{c}
 x = \boxed{} \\
 y = \boxed{} \end{array} \]

- **C**
 \[\text{LCS} \text{ ends in neither } x_i \text{ nor } y_j \]

 \[\begin{array}{c}
 x = \boxed{K} \\
 y = \boxed{J} \end{array} \]

\[\text{LCS}(\overline{x_i}, \overline{y_j}) = \text{LCS}(\overline{x_i}, \overline{y_{j-1}}) \]
\[\text{LCS}(\overline{x_{i-1}}, \overline{y_j}) \]
\[\text{LCS}(\overline{x_{i-1}}, \overline{y_{j-1}}) \]

These LCS have already been computed!

But LCS can't end in both \(x_i, y_j \):

\[\begin{array}{c}
 x = \boxed{BACDE} \\
 y = \boxed{BDE} \end{array} \]

\[\text{LCS}(\overline{x_i}, \overline{y_j}) = \max \left(\begin{array}{c}
 \text{LCS}(\overline{x_i}, \overline{y_{j-1}}), \text{LCS}(\overline{x_{i-1}}, \overline{y_j}), \text{LCS}(\overline{x_{i-1}}, \overline{y_{j-1}}) \end{array} \right) \]

- **A**
- **B**
- **C**

will always be \(\leq \text{(computed before A, B)} \)

(ex if \(x = \boxed{BACDE} \) Better to match \(y = \boxed{BDE} \) than \(B \)

matching:

- **E**:
 \[\text{LCS}(X, Y) = \text{DE} \]
- **B**:
 \[\text{LCS}(X, Y) = B \]
Dynamic Programming Solution

Recall: \(X \) is length \(m \), \(Y \) is length \(n \)

(1) Size of array to store values? \(\max((m+1) \times (n+1)) \)
 Compare every prefix of \(X \) to every prefix of \(Y \).

(2) What each entry holds?
 \(c[i][j] = \text{LCS}(X_i, Y_j) \) (length).

(3) Dynamic Programming Formulation:
 \[
 c[i][j] = \begin{cases}
 0 & \text{if } i = 0 \text{ or } j = 0 \\
 c[i-1][j-1] + 1 & \text{if } X_i = Y_j \\
 \max(c[i-1][j], c[i][j-1]) & \text{if } X_i \neq Y_j
 \end{cases}
 \]

(4) Base Case? \(i = 0 \) or \(j = 0 \).

(5) To fill matrix:
 \(c[0][0..n] = 0 \), \(c[0..m][0] = 0 \)

 For (\(i = 1 \) to \(m \)) // every prefix of \(X \)
 For (\(j = 1 \) to \(n \)) // every prefix of \(Y \)
 \(c[i][j] = \text{<based on D.P. formulation>} \)

(6) Optimal value (length)? In \(c[m][n] \).

(7) Run Time? \(O(mn) \).
How to find actual LCS?

Quick example: ...
Actual solution (LCS)?

Quick example will show how to find subsequence.

ex 1: \(X = B A C D B \) \(m = 5 \) \(n = 4 \)
\(Y = B D E B \)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
& 0 & B & D & E & B \\
\hline
0 & 0 & * & 1 & 1 & 1 & * \\
\hline
B & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline
A & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline
C & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline
D & 0 & 1 & 2 & 2 & 2 & 2 \\
\hline
B & 0 & 1 & 2 & 2 & 2 & 3 \\
\hline
\end{array}
\]

Fill in row-order

arbitrarily break ties
between \(\leftarrow \) and \(\uparrow \) by
choosing \(\leftarrow \)

Find subsequence?

Keep 2D array of arrows that indicate where
best LCS was from.

Notice: Only indices with \(\leftarrow \) indicate that corresponding
char is in LCS. So store these chars.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\hline
0 & \phi & - & - & - & - \\
\hline
1 & B & \leftarrow & \leftarrow & \leftarrow & \leftarrow \\
\hline
2 & A & \leftarrow & \leftarrow & \leftarrow & \leftarrow \\
\hline
3 & C & \uparrow & \leftarrow & \leftarrow & \leftarrow \\
\hline
4 & D & \uparrow & \leftarrow & \leftarrow & \leftarrow \\
\hline
5 & B & \uparrow & \leftarrow & \leftarrow & \leftarrow \\
\hline
\end{array}
\]

LCS: \(B D B \)
GetSubsequence()
1. Start at $C[i][n]$
2. Follow arrows until $-$ (null char)
3. If ever find \uparrow arrow, output corresponding character (if $C[i][j] = \uparrow$, output x_i (or y_j)
4. Return reverse of outputted string
LCS Problem

another example...

\[X = B C A A D \quad m = 5 \quad n = 4 \]
\[Y = A A C D \]

```
   D A A C D
  ------------------
  D         0     0     0     0
  B         0     0     0     0
  C         0     0     0     *1 C ← 1
  A         0     1     1     1
  A         1     1     1     1
  D         1     2     2     2     3 D
```

"incorrect" match

Find sequence:
Start at \([m][n]\)
For every \(i\) output character (in reverse)

\[\text{LCS}(X_5, Y_4) = - A A D \]
Find actual subsequences? Quick ex.

ex: \(X = BCEAD\), \(m = 5\), \(n = 3\)

\(Y = ADA\)

\[\begin{array}{ccccc}
O & A & D & A & \\
0 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 \\
C & 0 & 0 & 0 & 0 \\
E & 0 & 0 & 0 & 0 \\
A & 0 & 0 & 0 & 0 \\
D & 0 & 0 & 0 & 0 \\
\end{array}\]

1. Note: First A's in \(X, Y\) matched
2. although "wrong" A's matched later
3. where we correctly decide that matching the first A in \(X\) yields longer LCS

How to find actual LCS?

- Keep arrows that indicate where best LCS was from.
- Notice: only indices with ^ indicate that corresponding char is in LCS. So store these chars.

\[\begin{array}{ccccc}
O & A & D & A & \\
D & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 \\
C & 0 & 0 & 0 & 0 \\
E & 0 & 0 & 0 & 0 \\
A & 0 & 0 & 0 & 0 \\
D & 0 & 0 & 0 & 0 \\
\end{array}\]

Break ties between \(\leftarrow, \uparrow\) by arbitrariness choosing \(\leftarrow\)

1. Start at \(C[m][n]\), \(\text{ex: } \leftarrow \uparrow \uparrow\)
2. Follow arrows
3. If see '^' output character
4. LCS is reverse of outputted string

LCS = AD
Quick example will show how to find subsequence.

ex(1) \(X = BCEAD \) \(m = 5 \) \(n = 4 \)

\(Y = BDEB \)

<table>
<thead>
<tr>
<th></th>
<th>(B)</th>
<th>(D)</th>
<th>(E)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(B)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(C)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(E)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(A)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(D)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>