Longest Common Subsequence

Compare DNA of 2 organisms

$S_1 = ACCGGTCACT...$ $CCGTCT$
$S_2 = TCCGATCTG...$

Many ways to measure similarity:
- # identical characters in the same index
- # substrings in common
- longest common subsequence

First, what is a subsequence?

Informally: string Z is a subsequence of string X if Z is made up of characters from X in the same order they appear in X.

Formally: For a string $X = x_1x_2...x_m$, Z is a length-k subsequence of X if there exists "an increasing sequence of indices" $i_1 < i_2 < ... < i_k$ such that $Z = x_{i_1}x_{i_2}...x_{i_k}$

Subsequences of S_1? A GCC CTG GA

✓ ✓ x ✓
Longest Common Subsequence (LCS) of strings X, Y is longest subsequence that both X, Y contain.

LCS Problem - Given 2 strings $X = x_1, x_2, \ldots, x_m$ and $Y = y_1, y_2, \ldots, y_n$, find the LCS of X and Y. Denote $\text{LCS}(X, Y)$.

$LCS(S_1, S_2) = CCCCTCT$

We will start with finding the length of the LCS. Denote $|\text{LCS}(X, Y)|$.

Brute Force?
1. Enumerate all subsequences of X and all subsequences of Y.
 - 2^m subsequences of X? for each character: 2 choices -
 - 2 sub-sequences of Y either include it in the subsequence or don't.

2. Hash one list into table. Hash the other while storing collisions. (collisions indicate common subsequences)
 \(\Rightarrow 0(2^m + 2^n)\)

3. Scan collisions to find the one of max length
 Total: \(0(2^m + 2^n)\)

Greedy? Unclear what a greedy approach would be.

Dynamic Programming

Does problem exhibit optimal substructure property? Yes \checkmark

\[\Rightarrow \text{LCS of } X, Y \text{ depends on LCS of substrings of } X, Y.\]
Which substrings should we consider?

Suppose: \(S_1 = \overline{ACCCC...CC} \) \(\Rightarrow \) \(\text{LCS}(x, y) = A \).
\(S_2 = \overline{BBBBB...BBA} \)

- or - (vice versa)
\(S_1 = \overline{BBBBB...BBA} \)
\(S_2 = \overline{ACCCC...CC} \)

"Need to consider all of \(S_1 \) and all of \(S_2 \) starting from the beginning"

Prefix any leading (starting from beginning)
contiguous (adjacent) substring

Ex: \(X = BACDB \) prefixes: \(B, BA, BAC, BACD \) ...
\(Y = BDEB \) prefixes: \(B, BD, BDE, \ldots \)

Denote:
\(\overline{X}_i = \text{length}-i \text{ prefix of } X \)
\(\overline{Y}_i = \text{""""""""""""""y} \)

Ex: \(\overline{X}_3 = BAC, \overline{Y}_3 = BDE \), \(\overline{X}_2 = BA, \overline{Y}_1 = B \), etc...
Another example:

\[X = C D D D \]
\[Y = D D D C \]
Use solutions for shorter prefixes of X, Y to find solutions for longer prefixes.

But how?

Initial idea: compare same-length prefixes of X, Y.

New (smaller) ex: $X = BACDB$

\[Y = BDB \]

LCS so far: \[\uparrow \uparrow \uparrow \uparrow \rightarrow \text{but LCS = BDB not } B! \]

Notice: Any character in X can match with any character in Y.

\[X = \ldots D \ldots B \text{ or } X = \ldots D \ldots B \]

\[Y = \ldots D \ldots B \]

(can't skip a character block that character might be in LCS!)

Must compare every prefix of X with every prefix of Y.

LCS so far?

\[X = B \ B \ B \ B \ B \ldots \ BA \ BA \ldots \ BACDB \]
\[Y = B \ BD \ BDE \ldots BDEB \ldots B \ BD \ BD \ldots BDB \]

CS so far: \[B \ B \ B \ B \ B \ B \ B \ BD \ BDB \]

\[\widetilde{x_1} \widetilde{y_1} \widetilde{x_1} \widetilde{y_2} \widetilde{x_1} \widetilde{y_3} \ldots \widetilde{x_2} \widetilde{y_1} \widetilde{x_2} \widetilde{y_2} \ldots \]

Keep this ordering in mind! Smaller prefixes first!
Now...

\[X = \boxed{BACD} B \]

Suppose we knew LCS of some prefixes of \(X, y \).

Know \(\text{LCS}(X_{i-1}, Y_{j-1}) \)

"How to use next chars in \(X, y \) to find \(\text{LCS}(X_5, Y_4) \)?"

2 cases based on next chars: either equal or not equal

Case 1: If \(x_i = y_j \):

\[X = \boxed{X_{i-1}} B \]
\[Y = \boxed{Y_{j-1}} B \]

Can match \(x_i + y_j \) to get a longer LCS.

\[\text{LCS}(X_i, Y_j) = \text{LCS}(X_{i-1}, Y_{j-1}) + 1 \]

Ques: What if \(x_i \) also matches with a previous char in \(Y \)?

When would it be better to match?

Ex: \(X = \boxed{BACD} N \)
\(x_i \) with a previous char in \(Y \)?

\(X = \boxed{BACD} N \)
\(Y = \boxed{BNE} N \)

Better to match \(x_i \) (N) with a previous \(N \) in \(Y \) only if there is a future character in \(X \) that also matches.
But we will discover this in a future computation.

\[
\begin{align*}
\bar{x}_5 & \quad \text{For } (\bar{x}_6) = \text{BACDNE} \\
(\bar{y}_3) & \quad \text{BNEN} \\
\uparrow \quad \uparrow & \\
\text{LCS}_1 & = 1 \quad \text{new LCS} = 2
\end{align*}
\]

\[\text{LCS}(\bar{x}_6, \bar{y}_3) \text{ computed after LCS}(\bar{x}_5, \bar{y}_4)\]

Would match current N (\(x_5\)) with a previous N (\(y_2\)) only if there is some future char in \(x\) that can be matched with a char in \(y\) (e.g., E in the example above).

But we would discover this in a future computation - e.g., when computing \(\text{LCS}(\bar{x}_6, \bar{y}_3)\) in the example above (the matching E's).

Case 2: \(x_i \neq y_j\)

\[\begin{align*}
X & = \text{BACD} \swarrow E \\
Y & = \text{BDEB} \swarrow \swarrow \swarrow \swarrow \swarrow \\
& \quad \text{LCS won't improve (from a previously computed LCS).}
\end{align*}\]
1. LCS(X_i, Y_j) may end in X_i.
2. LCS(X_i, Y_j) may end in Y_j.
3. LCS(X_i, Y_j) can end in both X_i, Y_j.

$X = \{B, A, C, D, E\}$
$Y = \{B, D, E, B\}$

$LCS = \{B, D, E\}$
$LCS = \{B, C, D\}$

But these have already been found in a previous computation.

4. Or, LCS ends in neither.

$X = \{B, A, C, D, K\}$
$Y = \{B, D, E, J\}$

$LCS = \{B, D, E\}$

$|LCS(X_i, Y_j)| = \max\left\{ |LCS(X_{i-1}, Y_{j-1})|, |LCS(X_{i-1}, Y_j)|, |LCS(X_i, Y_{j-1})| \right\}$

(A) $|LCS(X_{i-1}, Y_{j-1})|$
(B) $|LCS(X_{i-1}, Y_j)|$

will always be $\leq (A, B)$.
Dynamic Programming Solution

Recall: X is length m, Y is length n

1. Size of array to store values: \(\max((m+1) \times (n+1)) \).

 Compare every prefix of X to every prefix of Y.

2. What each entry holds?
 \(C[i][j] = \text{LCSS}(X_i, Y_j) \) (length).

 \(\text{if } i = 0 \text{ or } j = 0 \) \(\text{if } x_i = y_j \)

3. Dynamic programming formulation:
 \(C[i][j] = \begin{cases}
 0 & \text{if } i = 0 \text{ or } j = 0 \\
 C[i-1][j-1] + 1 & \text{if } x_i = y_j \\
 \max(C[i-1][j], C[i][j-1]) & \text{if } x_i \neq y_j
 \end{cases} \)

4. Base Case: \(i = 0 \text{ or } j = 0 \).

5. To fill matrix:
 \(C[0][0...n] = 0, C[0...m][0] = 0 \)

 \(\text{for } (i = 1 \text{ to } m) \ 	ext{// every prefix of } X \\
 \text{for } (j = 1 \text{ to } n) \ 	ext{// every prefix of } Y \\
 C[i][j] = \text{<based on D.P. formulation>} \)

6. Optimal value (length)? In \(C[m][n] \).

7. Run Time \(\Theta(mn) \).
How to find actual LCS?

Quick example...