Implement w/ 2xn array C:
C[1][...n]: best time through S1,...,n
C[2][...n]: " " " S2,...,n

Make Car(a1,a2,t1,t2,n). // a1,a2: lists of station times
// t1,t2: " " transfer
// Base Cases
// n: number of stations.
C[1][0] = a1, // time through S1,
C[2][0] = a2, // " " S2,

4) How to fill matrix

for (j = 2 to n)
 // times through S1,j
 from1to1 = C[1][j-1] + a1j; // coming from line 1
 from2to1 = C[2][j-1] + t1j-1 + a1j; // transferring
 // from line 2

 if (from1to1 < from2to1)
 C[1][j] = from1to1
 prevline[1][j] = 1 // best prev station on line 1
 else
 C[1][j] = from2to1
 prevline[1][j] = 2 // best prev station on line 2

 // times through S2,j
 from1to2 = C[1][j-1] + t1j-1 + a2j; // transferring
 // from line 1
 from2to2 = C[2][j-1] + a2j; // from line 2
if (from 2 to 2 < from 1 to 2)

\[C_{2ij} = \text{from 2 to 2} \]
\[\text{prevline}[2][j] = 2 \quad // \text{best prev station on line 2} \]

else

\[C_{2ij} = \text{from 1 to 2} \]
\[\text{prevline}[2][j] = 1 \quad // \text{best prev station on line 1} \]

end for

(5) How to find final answer:

// Final min cost?
if \(C_{1i} < C_{2i} \)

\[c^* = C_{1i} \]
\[\text{lastline} = 1 \quad // \text{last station on line 1} \]

else

\[c^* = C_{2i} \]
\[\text{lastline} = 2 \quad // \text{last station on line 2} \]

end if
Try for example:

(from line 1, from line 2)

\[\min \]

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 7 & (16, 19) & (19, 17) & (21, 25) & (29, 32) \\
2 & 8 & (14, 13) & (25, 19) & (22, 23) & (29, ?)
\end{array}
\]

Look at previous entries of table to fill next entry.

\[C^* = \min (29, ?7) = 27 \]

Now, how to find the sequence of lines to visit?

* To Do:* Update code to do this.

First, last line to visit?

- line that yields \(C^* \)

<add to code>

Now, \((b)\) find sequence of lines? Can see in \(C \) array
How to keep track of this while filling c?

Another array: prevline

prevline $[j,j]$ $(j=2,n)$ previous best line before S_{nj}

prevline $[2][j]$ S_{nj}

(add to code) look at C to find line previous to station 5.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

last line = 2

Now trace prevline starting from lastline to -1.

lastline = 2 \Rightarrow 2 \leftarrow 2 \leftarrow 1 \leftarrow 2 \leftarrow 2 \leftarrow -1

(station 5) lastline

:. best line at station 4 was 2.
(7) Run Time:

Run Time: n Stations?

to fill C[J][J]: for loop from 1 to n : O(n)
" " prevLine[J][J] : O(n)
" " Scan : O(n)

Total : O(n)
Longest Common Subsequence

Compare DNA of 2 organisms

$S_1 = A C C G G T C A C T \cdots$
$S_2 = T T C C G A T C T G \cdots$

Many ways to measure similarity:
- # identical characters in the same index
- # substrings in common
- longest common subsequence

First, what is a subsequence?

Informally: string Z is a subsequence of string X if Z is made up of characters from X in the same order they appear in X.

Formally: For a string $X = x_1, x_2, \ldots, x_m$, Z is a length-k subsequence of X if there exists "an increasing sequence of indices" $i_1 < i_2 < \ldots < i_k$ s.t.

$Z = x_{i_1} x_{i_2} \cdots x_{i_k}$

Subsequences of S_1? A GCC CTG GA

✓ ✓ X ✓
Longest common subsequence (LCS) of 2 strings \(X, Y\) is longest subsequence that both \(X, Y\) contain.

LCS problem - Given 2 strings \(X = x_1, x_2, \ldots, x_m\) and \(Y = y_1, y_2, \ldots, y_n\), find the LCS of \(X\) and \(Y\). Denote \(\text{LCS}(X, Y)\).

"We will start with finding the length of the LCS. Denote \(|\text{LCS}(X, Y)|\)"

Brute Force?

1. Enumerate all subsequences of \(X\) and all subsequences of \(Y\).
 - \(2^m\) subsequences of \(X\) for each character: 2 choices - "\(\)" and either include it in the subsequence or don't.
2. Hash one list into table. Hash the other while storing collisions. (Collisions indicate common subsequences. \(\Rightarrow 0(2^m + 2^n)\))
3. Scan collisions to find the one of max. length. Total: \(0(2^m + 2^n)\).

Greedy? Unclear what a greedy approach would be.

Dynamic Programming

Does problem exhibit optimal substructure property? Yes \(\checkmark\).

\(\Rightarrow\) LCS of \(X, Y\) depends on LCS of substrings of \(X, Y\).
Which substrings should we consider?

Suppose: \(S_1 = \overline{A} \overline{C} \overline{C} \overline{C} \ldots \overline{C} \overline{C} \) \(\overset{?}{\Rightarrow} \) \(\text{LCS}(x, y) = A \).
\[S_2 = \overline{B} \overline{B} \overline{B} \overline{B} \ldots \overline{B} \overline{B} \overline{A} \]

- or - (vice versa)

\[S_1 = \overline{B} \overline{B} \overline{B} \ldots \overline{B} \overline{B} \overline{A} \]
\[S_2 = \overline{A} \overline{C} \overline{C} \overline{C} \ldots \overline{C} \overline{C} \]

"Need to consider all of \(S_1 \) and all of \(S_2 \) starting from the beginning"

prefix - any leading (starting from beginning)
contiguous (adjacent) substring

ex: \(X = \overline{B} \overline{A} \overline{C} \overline{D} \overline{B} \) prefixes: \(B, BA, BAC, BACD, \ldots \)
\[Y = \overline{B} \overline{D} \overline{E} \overline{B} \ldots \overline{B}, BD, BDE, \ldots \]

Denote:
\[\overline{x}_i = \text{length-}i \text{ prefix of } X \]
\[\overline{y}_i = \text{" } \overline{y} \text{" } \]

ex: \(\overline{x}_2 = \overline{B} \overline{A} \), \(\overline{y}_3 = \overline{B} \overline{D} \overline{E} \), \(\overline{x}_1 = \overline{B} \), \(\overline{y}_1 = \overline{B} \), etc...
Use solutions for shorter prefixes of X,Y to find solutions for longer prefixes.

But how?

Initial idea: compare same-length prefixes of X,Y

ex: X = BACDB
 Y = BDEB
 ↑↑↑↑↑

LCS so far: B B B B → but LCS = BDB not B!

Consider this example:

S₁ = C D D D
S₂ = D D D C

to find LCS(S₁, S₂) = D D D...
must compare every prefix of S₁ with every prefix of S₂

S₁ C C C ... C ... C D C D ... C D D D
S₂ D D D D ... D D D D C ... D D D D C
CS so far - - C D D D

X B B B B ... B ... BA ... BACD ... BACDB
Y B BD BDE ... BDEB B BD ... BDEB
Now...

\[X = \text{BACDB} \]
\[Y = \text{BDDEB} \]

Suppose you knew \(|\text{LCS}| \) of these prefixes

\[|\text{LCS}(\overline{X}_4, \overline{Y}_3)| = 2 \quad (BD) \]

How to use next chars in \(X, Y \) to find \(\text{LCS}(\overline{X}_5, \overline{Y}_4) \)?

2 cases based on next chars \(X_5, Y_4 \)

Case 1: If \(x_i = y_j \)

\[X = \overline{X}_{i-1} B \]
\[Y = \overline{Y}_{j-1} B \]

Can match \(x_i + y_j \) to get a longer LCS.

\[|\text{LCS}(\overline{X}_i, \overline{Y}_j)| = |\text{LCS}(\overline{X}_{i-1}, \overline{Y}_{j-1})| + 1 \]

Question: What if \(x_i \) also matches with a previous char in \(Y \)?

Ex: \(X = \text{BACDN} \) Better to match \(x_i \) (N) with previous \(N \) in \(Y \) only if

\[Y = \text{BNEN} \]

Would match \(x_i \) (N) with previous char in \(Y \) only if there is a future character in \(X \) that can be matched with another character in \(Y \).