Assembly Line Problem

- Cars produced in factory with 2 assembly lines.
- Each line has \(n \) stations (that add car parts).
- Stations \(S_{1,j} \) and \(S_{2,j} \) for \(j = 1, \ldots, n \).
- Stations \(S_{1,j} \) and \(S_{2,j} \) perform same task but possibly at different speeds.
 - \(a_{1,j} \) = time required at \(S_{1,j} \)
 - \(a_{2,j} \) = time required at \(S_{2,j} \)

Cars usually stay on one line (time from \(S_{1,i} \) to \(S_{1,i+1} \) + \(S_{2,i} \) to \(S_{2,i+1} \) negligible).

"Special" Rush order cars can switch from line 1 to line 2 to speed up.

- \(t_{1,j} \) = time to switch from \(S_{1,j} \) to \(S_{2,j+1} \)
- \(t_{2,j} \) = time to switch from \(S_{2,j} \) to \(S_{1,j+1} \)
Goal:
Given values for \(a_{ij}, a_{kj}, t_{pj}, t_{kj}\), find set of stations to visit that will minimize overall time

Optimization problem: goal is to minimize or maximize a specified value.

Other optimization problems: coin changing, closest points
not: searching, sorting

Ex:

\[\begin{array}{c}
\text{\(7\)} \rightarrow \text{\(9\)} \rightarrow \text{\(3\)} \rightarrow \text{\(4\)} \rightarrow \text{\(8\)} \\
\text{\(8\)} \rightarrow \text{\(5\)} \rightarrow \text{\(6\)} \rightarrow \text{\(4\)} \rightarrow \text{\(5\)}
\end{array} \]

\[\text{\(7 + (2) + 5 + (1) + 3 + 4 + 8 = 30\) (Optimal is 27).} \]

Note: Greedy doesn't work!

Brute Force: consider all possible combinations
For each of \(n\) pairs of stations, 2 possibilities \(\Rightarrow O(2^n)\)

Better: consider smaller versions of the problem, use solutions to those to solve larger + larger versions.

Find minimum time through each station first, then go back to find sequence of stations.

\[\text{Min time through station 1? \(\min(7, 8) = 7\)} \]
Group Work:
- Use these times to find min. time through station 2.
- Find a general formula to find min. time through Station J.

"Consider line 1 for station 2.
Two ways to get there: from Line 1 or from Line 2.

Station 2, Line 1, (2 ways:)
From line 1: $7 + 9 = 16$ \(\rightarrow \) min. time for
" " 2: $8 + 2 + 9 = 19$ \(\rightarrow \) station 2, line 1.

Station 2, Line 2, (2 ways:)
From line 1: $7 + 2 + 5 = 14$ \(\rightarrow \)
" " 2: $8 + 5 = 13$ \(\rightarrow \) min. time for Station 2
line 2

Note: Not always best to come from the same line.

(100) \(\rightarrow \) (1) \(\leftarrow \) best option is to transfer from line 2.
(1) \(\rightarrow \) (1) 101 vs 2

Min time through Station 2: $2 + 9 = 13$.
"Let's generalize this for any station j."

\[C(S_{1j}) = \text{fastest time through } S_{1j} \]
\[C(S_{2j}) = \text{fastest time through } S_{2j} \]

Need to express \(C(S_{1j}) \) and \(C(S_{2j}) \) in terms of previous problem: \(C(S_{1j-1}) \) \(C(S_{2j-1}) \).

(1) Dynamic Programming Formulation

\[C(S_{1j}) = \]

1. \[\min \{ \]
 \[\begin{align*}
 &1: & C(S_{1j-1}) + 0 + a_{1j} &\text{if } j > 1 \\
 &2: & C(S_{2j-1}) + t_{2j-1} + a_{1j}
 \end{align*} \]

Which one?

For which values of \(j \)? \(j = 2, 3, \ldots, n \)

For \(j = 1 \)? \(C(S_{11}) = a_{11} \) (2) Base Case