Recursive function

BuildHeap (e) // e is initially root

- If e not leaf
 - BuildHeap (left child of e)
 - BuildHeap (right "")
 - Percolate-Down(e)

RunTime:

Seems like \(O(n \log n) \)

Percolate \(n \) nodes, each percolation takes \(\log n \)

But actually time is \(O(n) \)!

Beautiful proof:

1. Last here \(\rightarrow 0 \)
2. Next here \(\rightarrow 9 \)
3. Star here \(\rightarrow \) Run time \(\sim \) # swaps

Suppose always swap with left-most un-swapped descendant

Cross out node when we swap with it

X's = # swaps \(\sim \) runtime.

How many X's? \(n = \log(n) = O(n) \).
Notice: can't start at top and swap w/ smaller

10
/ \
12 9
/ \
14 6 5 8

⇒ 4
 / \
12 10
 / \
14 6 5 8

⇒ 4
 / \
12 5
 / \
14 6 10 8

Can already see 9 + 6 violate heap order property (9 > 6)

Another operation

Decrease Key (x, value) - decrease x's priority to value

ex: Decrease Key (25, 18) (from BuildHeap() example)

How to implement in O(log n)? Need to find x.

⇒ Keep look-up (hash) table of elements + their indices (key: element index)

(key) (index)

x | i

find index i of x in table
set array[i] = value

8
percolate array[i] up until heap order satisfied
update table (at most O(log n) updates)

25
6

5 7 10 20 30 25 35 40 15 60 50
0 1 2 3 4 5 6 7 9 10 11
Ex. \(c = 6 \)

\[
\begin{array}{ccccccc}
5 & \quad & \quad & \quad & \quad & \quad & \quad \\
7 & \quad & 20 & \quad & \quad & \quad & \quad \\
10 & 30 & 18 & 35 & \quad & \quad & \quad \\
\end{array}
\]

\[
\begin{array}{ccccccc}
5 & \quad & \quad & \quad & \quad & \quad & \quad \\
7 & \quad & 18 & \quad & \quad & \quad & \quad \\
20 & 35 & \quad & \quad & \quad & \quad & \quad \\
\end{array}
\]
Graphs - used to model pairwise relations between entities.

Graph \(G = (V, E) \) where
- \(V \): vertices/nodes
- \(E \): edges/arcs/links \((u, v) \) when \(u, v \in V \)

"Nodes ~ cities"
"Edges ~ roads"

Undirected graph - no particular ordering of vertices of an edge:

Vertices: \(V = \{ a, b, c, d, e \} \)
Edges: \(E = \{ (a, b), (a, c), (b, c), (b, d), (b, e), (c, d), (d, e) \} \)

- Or -
\(E = \{ (b, a), (c, a), (c, b), (d, b), (e, b), (d, c), (e, d) \} \)

Directed graphs - pair of vertices of an edge are ordered

Edges: \(E = \{ (a, b), (b, c), (b, d), (c, a), (c, d), (d, e), (e, b) \} \)

"certain roads blocked off bc of snow"
adjacency (undirected): \(u \) adjacent to \(v \) if \((u,v) \) or \((v,u) \) \(\in \) \(E \)

adjacency (directed):

\[
\text{(path - sequence of vertices } v_1, v_2, \ldots, v_n \text{ such that an edge exists for every adjacent pair in the trees)}
\]

\[
\text{example: } P: c - a - b - c - d - e = (c, a), (a, b), (b, c), (c, d), (d, e)
\]

path length: number of edges in path

\[
\text{example: } |P| = 5
\]

distance of vertices \(u, v \) = length of shortest path from \(u \) to \(v \)

\[
\text{example: } \text{dist of } c, b = 2 \quad (\text{path: } c - a - b)
\]

(cycle - path of \(n \) vertices \(v_1, \ldots, v_n \) where \(v_1 = v_n \))

weighted graph: edges have weights/cost.

\(w_{u,v} \) = weight of edge \((u,v)\)

\[
\begin{align*}
\text{amount of time it takes} & \quad \text{to traverse the edge} \\
\end{align*}
\]

Can also have weighted undirected graphs.