Run Time?

At each level, total merge time is $O(n)$.

levels? $O(\log n) = \# \text{times we can split list of size } n \text{ in } \frac{1}{2} \text{ until we get lists of size 1}$

Total: $O(n \log n)$.
<Skip>

Our implementation (of Merge) not in-place.

Stable? Yes, ordering among equal elements is preserved.

Example of Divide-and-Conquer (and Combine) algorithm.

Divide: problem into smaller sub-problems (Split list in 1/2)
Conquer: (Solve) sub-problems (Merge)
Combine: (Apply to all sublists)
Quicksort: Divide-and-conquer-and-combine

Choose an element \(v \) (pivot), partition the list around \(v \):

\[\ll v \rr \]

\[\ll v \rr \]

Now recursively do the same on left and right sides.

Eventually, entire list will be sorted.

Quicksort (List A)

1. Divide - choose element \(v \) (pivot) and partition \(A \) into:
 - \(L \): elements \(\leq v \)
 - \(G \): \(\geq v \)

2. Conquer: Quicksort \(L \) and \(G \)

3. Combine: join \(L \) and \(G \)

Questions? (1) pivot? (2) partition?
Questions:

1. How to choose pivot?
2. How to partition?

How to Choose pivot?

worst-case: Pivot is always largest or smallest.

Each partition step partitions around only one element (pivot).

RunTime?
Choosing Pivot:
- smallest/largest element bad. Why?
 - only one element (i.e. the pivot) will get sorted
 in each partition (RunTime in this case?)
- random: expensive to generate
- median of 3: choose the median of leftmost, middle, rightmost elements.

ex: 20 5 37 61 15 11 59 12 48 1

\[\text{MedOf3}(20, 15, 1) = 15 \]

Partition \((A, \text{first}, \text{last}, \text{pivot})\):
(1) swap pivot with last element
(2) \(i\) points to first element
(3) \(j\) "" element before pivot
(4) while \(i\) and \(j\) have not crossed:
 * move \(i\) right, move \(j\) left until
 \(A[i] > \text{pivot} \) and \(A[j] < \text{pivot} \)
 * swap \(A[i], A[j]\)
(5) swap pivot with \(A[i] \)
(6) return \(i\)
ex: 26 5 37 61 15 11 59 12 48 1

\[\text{mof3}(26, 15, 1) = 15 \quad \text{(Move pivot out of the way)} \]

26 5 37 61 1 11 59 12 48 15

\[i \quad j \leftarrow j \]

12 5 37 61 1 11 59 26 48 15

\[i \leftarrow i \quad j \leftarrow j \]

12 5 11 61 1 37 59 26 48 15

\[i \quad j \]

12 5 11 1 61 37 59 26 48 15

\[j \quad i \]

Done since \(j < i \)

\text{swap pivot w/ A[i:j]}

\[\underbrace{12 5 11 1 15 37 59 26 48 61} \]

\[\text{Qsort}(\quad) \quad \text{Qsort}(\quad) \]
Partition $(A, \text{first}, \text{last}, \text{pivot})$ // Partitions A around pivot

 swap pivot and $A[\text{last}]$
 $i = \text{first}$
 $j = \text{last} - 1$
 loop = true
 while (loop) {
 while ($A[i] \leq \text{pivot}$) $i++$
 while ($A[j] > \text{pivot}$) $j--$
 if ($i < j$) // i and j have not crossed
 swap $A[i], A[j]$
 else // i and j have crossed
 loop = false
 swap pivot with $A[i]$
 }

$T(n) = O(n)$

cutoff - For small list (≤ 3) use insertion sort.

QuickSort $(A, \text{first}, \text{last})$ // Sorts A with cutoff of 3
if ($\text{last} - \text{first} < 3$) // $|A| \leq 3$
 InsertionSort (A)
else // $|A| > 3$
 pivot = $\text{med3} (A, \text{first}, \text{last})$
 split_point = Partition $(A, \text{first}, \text{last}, \text{pivot})$
 QuickSort $(A, \text{first}, \text{split-point} - 1)$
 QuickSort $(A, \text{split-point} + 1, \text{last})$
RunTime Quicksort?

average-case: pivot always roughly halves the list

\(O(\log n)\) recursive calls, each takes \(O(n) \Rightarrow O(n \log n)\)

worst-case: If pivot is always smallest or largest value, \(O(n)\) recursive calls \(\Rightarrow O(n^2)\)

best-case: also \(O(n \log n)\) (sorted list, perfect pivot doesn't help).

cut-off: For small lists \((n \leq 3)\), use insertion sort.

Insertion, merge, quick sorts are examples of general sorting algorithms.

ex: \(A\) is list of \(n\) integers between 0 and \(m\):

\(0 \leq A[1], A[2], \ldots, A[n] < m\)

ex: \(M = 10\)

\[3\ 1\ 4\ 1\ 5\ 9\ 2\ 5\]

\[0\ 2\ 1\ 1\ 1\ 2\ 0\ 0\ 0\ 1\]

Sorted list: 1 1 2 3 4 5 5 9