enqueue(h):
 ↓
Now can't add even though there is space at front

SOLN: circular array - "wrap-around" array
end of array wraps around to beginning

Now: enqueue(h):

```
    0 1 2 3 4 5 6
   h ... c d e f g
   ↑     ↑     ↑
back  front  back
  0     3     2
```

Problem? front will go to the end (after some dequeues)

after 4 dequeues:

```
    h ... [ ] [ ] [ ] [ ] [ ] [ ]
   ↑     ↑
back  front
```

After next dequeue():

```
    h [ ] [ ] [ ] [ ] [ ] [ ]
   ↑
back
```
front should point here

How to implement? Insert checks before front++ & back++
In enqueue():

```
if (back == Q.length-1) back = 0
```
In dequeue():

```
if (front == Q.length-1) front = 0
```
Linked List Implementation of Queues

Maintain:
- Node front: Pointer to front, initially = null
- Node back: back
- int currentSize: number of elements = 0

```
    a -> b -> c -> d -> null
    ^  ^  ^  
front  back
```

1. **enqueue(e)**
 - Node n = new Node(e)
 - back.next = n
 - back = n
 - currentSize++

2. **dequeue()**
 - Node tmp = front
 - front = front.next
 - currentSize--
 - return front.element

3. **isEmpty()**: return currentSize == 0

4. **size()**: return currentSize.
Recursion (Review) - programming technique where solution to the problem depends on solutions to sub-problems.

2 Parts:
- Base Case: solved without recursion
- Recursive Step: makes progress toward base case

1. Summing values from 1 to n.

Problem: summing from 1 to n.
Sub-problem: "" to values ≤ n.

\[
\sum_{i=1}^{n} i = 1 + 2 + 3 + 4 + \cdots + n
\]

\[
\sum_{i=1}^{n-1} i = n + n-1 + n-2 + \cdots + 1
\]

Write in terms of smaller versions of the same problem (summing):

\[
\sum_{i=1}^{n} i = n + \sum_{i=1}^{n-1} i \quad \text{(recursion)} \\
= n + \sum_{i=1}^{n-2} i \quad \text{(recursion)}
\]

We can stop expressing as a smaller problem when we get to a point where we can solve the problem directly. Which value of \(n \)? \(n = 1 \rightarrow \text{Base Case} \).
Base Case: For $n=1$, $\sum_{i=1}^{n} i = 1 + \bigcirc$ no recursion!

Write as a recursive function:

```c
int sum(n) {
    if (n == 1)
        return 1;
    else
        return (n + sum(n-1));
}
```

ex: $\text{sum}(5) = 15$
\[5 + \text{sum}(4) = 5 + 10 = 15\]
\[4 + \text{sum}(3) = 4 + 6 = 10\]
\[3 + \text{sum}(2) = 3 + 3 = 6\]
\[2 + \text{sum}(1) = 2 + 1 = 3\]
\[1\]

ex(2): Factorial: $n! = n \times (n-1) \times (n-2) \times \cdots \times 1$
How to write $n!$ in terms of smaller factorials?

\[n! = n \times (n-1)! = n \times (n-1) \times (n-2)! = n \times (n-1) \times (n-2) \times (n-3)!\]

Base Case? $n=1$ (or $n=0$). \Rightarrow then $n! = 1$
factorial \(n \) if \(n = 1 \) return 1 else return \(n \times \text{factorial}(n-1) \)

\[
\begin{align*}
\text{ex: } \text{factorial}(4) &= 24 \\
4 \times \text{factorial}(3) &= 4 \times 6 = 24 \\
3 \times \text{factorial}(2) &= 3 \times 2 = 6 \\
2 \times \text{factorial}(1) &= 2 \times 1 = 2 \\
\text{[]}
\end{align*}
\]

3. Sorted list A, of \(n \) numbers. Return true if \(x \) is in list; o/w return false. If \(y > x \), check middle

Time to scan? \(O(n) \)

Better: Binary Search:

\[
\text{BinSearch}(A) = \text{BS}(A[0 \ldots n/2]) \text{ or } \text{BS}(A[n/2+1 \ldots n-1])
\]

Base Case? when just one element in list.

Time: \(n \): Start with list of size \(n \). In the worst case, keep checking until list size is 1

\[
\{ 0(\log n) \}
\]
BinSearch(A, start, end, x)

// if just one element in list
if (start == end)
 if (A[start] == x)
 return true
 else
 return false

→ mid = \frac{start + end}{2}

No else
rec. here

if (A[mid] == x)
 return true
else if (A[mid] < x) //search right
 return BinSearch(A, mid+1, end, x)
else //search left
 return BinSearch(A, start, mid-1, x).
BS(A, 0, 6, 19)
\[\text{mid} = 3 \quad A[3] = 12 < 19 \Rightarrow \text{right} \]

BS(A, 4, 6, 19) \text{ mid} = 5 \quad A[5] = 20 > 19 \Rightarrow \text{left} \]

BS(A, 4, 4, 19) \text{ start} = \text{end} = 4
\[A[4] = 19 \quad \text{return true} \]

ex: \(x = 18 \) ?

BS(A, 0, 6, 18)
\[\text{mid} = 3 \quad A[3] = 12 \leq 18 \Rightarrow \text{right} \]

BS(A, 4, 6, 18) \text{ mid} = 5 \quad A[5] = 20 > 19 \Rightarrow \text{left} \]

BS(A, 4, 4, 18) \text{ start} = \text{end} = 4
\[A[4] \neq 18 \quad \text{return false} \]
Recall: operation contains(x) takes $O(n)$ for ArrayLists and LinkedLists, arrays since there is no ordering among the elements.

Binary Search Trees (BST) - data structure that has more ordering among elements.

Definitions:
- tree: an ordered collection of nodes
- root: the topmost node
- edge: the connection between nodes
- subtree: a tree contained in a larger tree
- node: a point in the tree
- leaf: a node with no children
- child: b is child of a if b is directly below a
- parent: a "parent" of b is directly above b
- siblings: nodes with same parent
- grandparents: parents of parent
- grandchildren: children of child
path from node n_i to n_k - sequence of nodes n_1, \ldots, n_k such that n_i is parent of n_k.

Example: path from a to k? $a \rightarrow c \rightarrow h \rightarrow k$

path length - # of edges on the path

Example: $a \rightarrow c \rightarrow h \rightarrow k \Rightarrow 3$

Notice: for every node, there is a unique path from root to that node.

depth of a node n_i - length of path from root to n_i.

Example: depth of b? = 1, depth of k? = 3

height of a node n_i - length of longest path from n_i to a leaf.

Example: height of b? = 2, a? = 3
Application for Trees

```
My Comp
  |- Project
    |- Docs
      |- CS201
        |- HW1
        |- Lab1
      |- CS202
        |- HW1
        |- Lab1
    |- Pics
      |- CS201
      |- Baby
      |- Pic1
      |- Pic2
    |- Backup
    |- BDay
  |- C
  |- D
```
void listAll(int d)

 print (d spaces)
 print name of node at depth d
 print ("\n")

 if (node at depth d is directory:)
 for each node of this directory:
 listAll(d+1)

Always print parent node first, then children.

Pre-order traversal -
Start at root; for each node:
1. Process node
2. Recursively process children

Run-Time in terms of \(n \) = # nodes? \(\Rightarrow O(n) \)

Another example

pre-order:
\[a \ b \ e \ f \ j \ c \ g \ h \ k \ i \ d \]

post-order:
\[e \ f \ j \ b \ g \ h \ i \ c \ d \ a \]