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Abstract— This paper presents a new method for navigation
and localization of a mobile robot equipped with an omnidirec-
tional camera. We represent the environment using a collection
of one-dimensional panoramic images formed by averaging the
center scanlines of a cylindrical view. Such 1D images can be
stored and processed with few resources, allowing a fairly dense
sampling of the environment. Image matching proceeds in real
time using dynamic programming on scale-invariant features
extracted from each circular view. By analyzing the shape of
the matching curve, the relative orientation of pairs of views
can be recovered and utilized for navigation. When navigating,
the robot continually matches its current view against stored
reference views taken from known locations, and determines
its location and heading from the properties of the matching
results. Experiments show that our method is robust to occlusion,
repeating patterns, and lighting variations.

I. INTRODUCTION

Vision-based robot navigation and localization is challeng-
ing due to the vast amount of visual information available,
requiring extensive storage and processing time. To deal with
these challenges, we propose the use of features extracted from
one-dimensional panoramic images taken during navigation.
This work builds on prior work for extracting stable features
from the scale space of one-dimensional panoramic images
[1] and for the global matching of two views using dynamic
programming [2]. In this paper we demonstrate the utility of
this approach for robot navigation and localization.

Figure 1 shows the robot equipped with an omnidirectional
camera, a sample panoramic view, the 1D circular image
formed by averaging the center scanlines, and an epipolar-
plane image (EPI) [3], i.e., the evolution of the 1D image
over time as the robot travels.

A. Motivation

One-dimensional images can be processed quickly with
low storage requirements, enabling dense sampling and real-
time analysis of views. The reduced dimensionality also aids
greatly in image matching, since fewer parameters need to be
estimated. However, there are also some factors that make it
difficult to extract stable, globally invariant features from 1D
omnidirectional images.

First, for global invariance to viewpoints, the imaged scene
must lie in the plane traversed by the camera (the epipolar
plane). This requires that the robot travels on a planar surface,
which limits the applicability to indoor environments. Even
then, extracting a single scanline from an omnidirectional view
is problematic since it is difficult to precisely maintain the
camera’s orientation due to vibrations [4].

Fig. 1. Our robot with omnidirectional camera, a sample panoramic view, the
circular 1D image formed by averaging the center scanlines of the panoramic
view, and the epipolar plane image (EPI), a “stack” of one-dimensional images
over time as the robot travels.

Instead, we form our 1D images by averaging of the
center scanlines of the cylindrical view, typically subtending
a vertical viewing angle of about 15 degrees. We thus trade
true distance-invariant intensities for robustness. This is not
a problem in practice since intensities change smoothly with
distance which in turn causes smooth changes in the scale
space, from which features are extracted.

A second difficulty of the 1D approach is that one-
dimensional images do not carry very much information.
Distinct features that can be matched reliably and uniquely
over wide ranges of views are rare. A unique descriptor would
have to span many pixels, increasing the chance of occlusion.
We thus forego global uniqueness of features in favor of a
large number of simple features, and use a global matching
technique that not only matches individual features, but also
considers their spatial relation.

B. Related work

There has been much recent work on invariant features in
2D images, including Lowe’s SIFT detector [5], [6], and the
invariant interest points by Mikolajczyk and Schmid [7], [8].
Such features have been used for object recognition and image
retrieval, as well as robot localization and navigation [9], [10].
A comparison of local image descriptors can be found in [11].

The classic epipolar-plane image (EPI) analysis approach
[3] has been applied to panoramic views with explicit image
stabilization for 3D reconstruction by Zhu et al. [4].

Ishiguro and Tsuji [12] describe a method for robot localiza-
tion from memorized omnidirectional views, which are stored
using Fourier coefficients; similarly, Pajdla and Hlaváč [13]
use the image phase of a panoramic view for robot localization.
Cauchois et al. [14] present a method for robot localization by
correlating real and synthesized omnidirectional images, but
they can only handle small viewpoint changes. Matsumoto et
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al. [15] present a similar method based on simply comparing
cylindrical gray-level images. None of the above methods
computes explicit feature correspondences or can tolerate large
changes in viewpoints or partial occlusion.

The idea of matching two panoramic images (or, more gen-
erally, circular feature sequences) using dynamic programming
originates with the work by Zheng and Tsuji [16], who coined
the term circular dynamic programming. They match vertical
line segments across two panoramic views, and do not model
unmatched features explicitly, but allow a line in one image
to match multiple lines in the other image. Vertical edges in
omnidirectional images are also used by Yagi et al. [17].

In contrast to existing work, our method matches two cir-
cular sequences of sparse features while explicitly accounting
for unmatched features, thus tolerating occlusion. We also
contribute a novel way of estimating the position of each
epipole (the respective other viewpoint) from the shape of the
matching curve.

C. Organization of the paper

The remainder of the paper is organized as follows. Section
II reviews the detection and matching of scale-space features.
Section III discusses the estimation of viewpoint change
and relative orientation from the matching curve. Section
IV presents our localization and navigation results in real
environments, and we conclude in Section V.

II. SCALE-SPACE FEATURES

We start with a brief review of the feature detection and
matching introduced in [1] and [2].

A. Feature detection

The key idea is to compute the scale space S(x, σ) of each
1D omnidirectional image I(x), x ∈ [0, 2π], over a range of
scales σ, and to detect locally scale-invariant interest points
or “keypoints” in this space. The scale space is defined as
the convolution of the image with a circular Gaussian kernel
G(x, σ), using a logarithmic scale for σ, so that neighboring
values of σ in the discrete representation of S are a constant
factor k apart. We typically use k = 21/3, i.e., 3 samples per
octave (doubling of σ). Note that we compute the scale space
of the luminance (gray-level) image, while color information
is still utilized by storing it in each keypoint’s descriptor. The
second image of Figure 2 shows an example.

Given a discretized scale space, differences are computed
both vertically (between neighboring smoothing scales σ),
and horizontally (between neighboring image locations x),
resulting in the difference scale spaces Dσ and Dx, respec-
tively. This is equivalent to convolving the original image with
difference-of-Gaussian (DoG) operators, which approximate
first and second derivatives of the scale space. Interest point
selection then proceeds by finding the minima and maxima
of Dσ and Dx (see the bottom two images in Figure 2). We
obtain subpixel estimates of both location x and scale σ by
fitting a quadratic surface to the 3×3 neighborhood of each
extremum. This also provides estimates of the local curvature.

Fig. 2. Feature computation. From top to bottom: part of the circular
panorama shown in Figure 1, the gray-level scale space S of the average
of all scanlines, differences of rows Dσ , and differences of columns Dx with
marked minima and maxima, which are candidate features.

The appeal of finding extrema in scale space is that it
provides automatic estimates of both position and scale of
features. Intuitively, at each image location, the DoG kernel
that best matches the underlying image intensities is selected.
Depending on its vertical (σ) position in scale space, an
extremum can thus represent an image feature of any size,
ranging from small details, such as table legs, to large features,
such as a couch or a wall of a room.

B. Feature matching

The extrema in both difference scale spaces Dσ and Dx are
our candidate features. We exclude clearly unstable features
with a small absolute value at the extremum or low curvature
around it. Given a typical 1D frame, a circular scanline of 1000
pixels depicting a cluttered indoor scene, we are then left with
about 200–400 features. For each feature, we store information
about the local shape of the scale space and the original
intensities and colors of the corresponding image location in
a feature descriptor. We define the matching score between
two features as the inverse Euclidean distance between their
descriptor vectors.

In the absence of narrow occluding objects, the features
visible from two different locations will have the same relative
ordering. This observation, known as the ordering constraint,
enables an efficient dynamic programming (DP) algorithm for
finding the globally optimal solution to the feature matching
problem. This algorithm, described in detail in [2], finds the
set of matches that maximizes the total matching score for
arbitrary rotations of both views under the ordering constraint
while leaving some features unmatched.

Figures 3 and 4 show sample matching results under dif-
ficult conditions. Figure 3 demonstrates that our method can
handle arbitrary rotations (circular shifts) as well as significant
lighting changes. It shows two images taken by a robot from
the same location but at different orientations. In addition
the ceiling lights were turned off in one of the images. The
observed matching curve is very close to the expected curve,
a straight line at a 45-degree angle (which wraps around
since the frames are circular), despite the fact that only few
features could be matched. Figure 4 show an EPI of the robot
navigating between bookshelves, as well as the curve resulting
from matching the first with one of the last frames. The S-
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Fig. 3. The matching curve for two omnidirectional images from the same
viewpoint under different rotations and in different lighting conditions.

shaped curve, discussed in detail in the next section, indicates
a significant change in viewing angle perpendicular to the
robot’s heading. Despite the large viewpoint change and the
locally ambiguous repetitive patterns, our algorithm recovers
the correct matches.

The entire matching process is quite fast. Our current
implementation on a 3 GHz Pentium 4 takes about 70 ms
to match two frames (35 ms for feature extraction and local
matching cost computation, and 35 ms for the global match-
ing). Taken together with 25 ms for unwarping the original
image, averaging the scanlines, and computing the scale space,
the total processing rate is about 10 Hz.

III. ESTIMATION OF VIEWPOINT CHANGE AND ROTATION

We now describe how to extract the relative orientation and
position of two views from the matching curve.

A. Finding the epipoles

The characteristic S-shape of the matching curve in Figure 4
results from the fact that features on either side of a translating
robot move in opposite directions, while features directly in
front and behind the robot remain stationary. The precise
location at which there is no visual motion is called the
epipole. Geometrically, the epipole is the projection (image)
of the other viewpoint. Since the images are panoramic, there
are two epipole locations, exactly π apart. In terms of visual
motion, the front epipole location is the center of expansion
and the rear location is the center of contraction.

Clearly, all possible matching curves have to pass through
both epipole locations, while the shape of the rest of the
curve depends on the distance to the observed scene points. In
general, the shape of the matching curve is constrained to lie
in two triangular regions, as shown in Figure 5. The top figure
illustrates the case of a robot translating forward in a straight
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Fig. 4. Top: EPI of an image sequence with repetitive patterns taken by a
translating robot. Bottom: The global matching curve between the first frame
and one of the last frames.

line, i.e., both views being aligned with the direction of travel.
We assume in this paper that image location π corresponds to
the front of the robot, and image location 0 to the rear. In this
case, the epipole locations E1 and E2 are (0, 0) and (π, π).
The more general case, in which each view’s orientation is
independent of the direction of translation, is shown in the
bottom of Figure 5. Here, the direction of translation is offset
by θ∗ in the first view and by φ∗ in the second view. This
results in a shifted matching curve—in a circular fashion since
the diagram wraps around—such that the epipoles now lie at
(θ∗, φ∗) and (θ∗ + π, φ∗ + π).

The question is now, given an arbitrary matching curve, how
can we find the epipoles and recover θ∗ and φ∗? The answer
is that for a correct, S-shaped matching curve there is indeed
only one way of placing the “feasible” triangular regions such
that the curve is fully contained, and thus only one solution for
the epipole locations. If the S-shape is not very pronounced,
however, estimating the epipole locations becomes unstable.
As the amount of translation goes to zero, the matching curve
approaches a straight line and the epipole locations become
undefined. In fact, this is the situation of Figure 3. It is easy,
however, to determine the relative rotation of the two views
δ∗ = φ∗− θ∗ from the amount of shift of the line, even if the
position of the epipoles along the line is uncertain.

Thus, the first step of our algorithm is to estimate δ∗,
the intercept of the straight line φ = θ + δ∗ through the
epipole locations. Let the matching curve be the function
φ = f(θ). We assume that f has been “unwrapped” in the
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Fig. 5. Top: Two panoramic views whose orientations are aligned with
the direction of translation. Each view’s orientation (i.e., robot heading) is
indicated with an arrow in the picture on the left; this heading corresponds
to image location π. For any observed scene point (such as A, B, and C),
the point’s pair of image locations (θ, φ) must lie within the shaded region
in the diagram on the right. Bottom: Two views with arbitrary orientations
θ∗ and φ∗ with respect to the direction of translation. Their relative rotation
δ∗ = φ∗ − θ∗ determines the offset of the diagonal line. In both figures, the
epipole locations are marked E1 and E2.

φ direction so that it is monotone increasing on [0, 2π] with
range [f(0), f(0) + 2π]. We define δ∗ to be the offset that
results in equal amounts of the curve of f above and below
the straight line φ = θ + δ∗:

δ∗ = arg min
δ
|#θ(f(θ) > θ + δ)− #θ(f(θ) < θ + δ)|, (1)

where #θ counts the number of discrete angles (pixel locations)
for which its argument is true. The optimal offset δ∗ can be
found quickly by searching over a small set of discrete angles.

Next, we compute the area A∗ between this reference line
and the matching curve as an indication of the amount of
translation between the two views (see Figure 6 top). Let
g(θ) = f(θ)−(θ+δ∗) be the vertical distance of the matching
curve to the reference line. Then

A∗ =
∫ 2π

0

|g(θ)|dθ. (2)

Note that the average absolute vertical distance

v∗ =
1
2π

A∗ (3)

measures the average viewpoint change, i.e., the average
(angular) visual motion between corresponding features. In the
absence of odometry information or other knowledge about the

absolute size or position of scene features, this is our only way
of quantifying the amount of translation between views.

Ideally, at this point, the matching curve would intersect
the reference line at two locations, θ∗ and θ∗+π, yielding the
epipoles E1 and E2. In practice, however, the matching curve
is affected by noise and occlusion, and the intersections may
not be exactly π apart. It is also possible that the curve crosses
the reference line more than twice. In fact, the (extreme) case
of matching two unrelated views would yield an arbitrary
matching curve. We thus need not only a robust way of
estimating the epipoles, but also a measure for the confidence
of the result.

Given a candidate location θ̂ for the first epipole, recall that
we expect the first half of the matching curve to be below the
reference line, and the second half above it (the shaded areas
in Figure 5). That is, we expect g(θ − θ̂) to be negative on
[0, π], and positive on [π, 2π]. Using the sign function

h(θ) =
{
−1, 0 ≤ θ < π

1, π ≤ θ < 2π
(4)

we define the signed area between the matching curve and the
reference line for a candidate offset θ̂ as

S(θ̂) =
∫ 2π

0

h(θ)g(θ − θ̂)dθ (5)

We find the epipole location by maximizing this area:

θ∗ = arg max
θ̂

S(θ̂), (6)

and denote the maximal signed area S∗ = S(θ∗). Again, the
optimum can be found quickly by searching over the discrete
values of θ̂.

B. Match confidence

Figure 6 shows two matching curves. The top curve results
from matching two frames under a significant viewpoint
change, but without occlusion. In such a case, the matching
curve fully obeys the S-shape rule, ensuring that an optimal
θ∗ value can been found such that the curve only enters the
positive areas. In this case the signed area S∗ is equal to
the absolute area A∗. In the presence of occlusion, or when
attempting to match unrelated scenes, the curve shape becomes
more irregular. Even for the optimal value of θ∗, there are
regions in which the area is negatively weighted. This is
illustrated in the bottom of Figure 6, where we attempt to
match two frames from entirely different viewpoints. Thus,
negatively weighted areas indicate a “matching error”, or lack
of confidence in the current match (and consequently, in the
estimates of the epipole locations). Since the area that is
weighted negatively is proportional to the difference between
absolute and signed areas, we define the error measure as

e∗ =
1
2π

(A∗ − S∗). (7)

This measure indicates the reliability of matching: the greater
e∗, the more likely the matching is erroneous. In practice, e∗

is typically less than 1 degree for correct matches.
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Fig. 6. Top: A good matching curve, which has only positive-signed area
(blue/dark). Bottom: A bad matching between two unrelated views with
significant amount of negative-signed area (red/light).

C. Evaluating the viewpoint change

We can experimentally evaluate the accuracy of our measure
v∗ for viewpoint change as follows: Given an image sequence
taken by the robot, we choose a small set of reference frames,
for example every 100-th or 200-th frame. We then select for
each frame of a different sequence the closest reference frame
based on the computed viewpoint change v∗ between the two
frames. Figure 7 shows the results for two sequences taken
along similar paths, but under different lighting conditions
and occlusions. It can be seen that the viewpoint change
between frames and reference frames correlates with the
actual distance, and that the selected closest reference frame
only briefly oscillates for views halfway between reference
frames. We have performed such experiments for other pairs

Fig. 7. Top: Two EPIs of sequences taken along similar paths with different
lighting and occlusion. Every 100-th frame of the first sequence was stored
as a reference frame. Middle: The index of the closest reference frame for
each frame of the second sequence. Bottom: The viewpoint change v∗ to the
closest reference frame, i.e., the average absolute change in viewing angle in
degrees.

of sequences and for sparser sets of reference frames, with
similar results. Overall we have found that the measure v∗ is
robust in the presence of lighting changes and some occlusion.

IV. LOCALIZATION AND NAVIGATION

In this section we demonstrate the feasibility of reliable
navigation from 1D omni-directional views in indoor environ-
ments.

A. World model

We represent the environment using a collection of 1D
panoramas associated with locations in an absolute coordinate
system. For each such reference view, we store the 1D image,
the 1D set of features, the position and orientation in the world
coordinate system, and a timestamp of when the view was
recorded.
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Fig. 8. A sample world model. The small (red) circles represent the locations
and orientations of the reference views. The thin (blue) visibility lines indicate
which pairs of reference views can be matched and are used for path planning.
The black lines illustrate the environment features such as walls, table, and
doorways, but are not part of the robot’s model.

When building a world model, we manually guide the
robot through the environment and take views that are spaced
by about 25cm to achieve a fairly dense sampling of the
surroundings. We derive the global coordinates from the initial
odometry values, followed by a global correction to achieve
loop closing and alignment with known locations, necessary
to compensate for odometry errors.

Figure 8 shows the layout of one of our world models,
acquired from a single run. In practice we store reference
views from multiple runs performed at different times of day
to get a sampling of different lighting conditions. Note that
the architectural features (walls, doorways, tables) are only
sketched for illustration, but are not part of the world model.

In our current system, each reference location requires
approximately 60kB of memory (uncompressed). About 80%
is used to store the features and their descriptors, the rest for
the panoramic view. Because of the relatively low cost per
location, we are able to store many reference images, and can
also afford to store multiple lighting conditions. The robot
could, however, still navigate using sparser models. Also, the
global accuracy of the locations is not critical since the robot
localizes itself with respect to nearby images.

B. Localization

The key component of our system is the accurate localiza-
tion of the robot from a small set of nearby reference views.
During navigation, the robot’s approximate location is known,
and we can match the closest reference frames first, until a
large enough set of reference views has been found whose
matching error is below a threshold. If the robot is placed at
an unknown location, however, we must match all reference
views until enough good matches have been found.

While the viewpoint change v∗ of the matched reference
views can be used for a first location estimate, the most precise
location and orientation estimate of the robot can be obtained
from the epipole angles. Formally, localization involves esti-
mating the robot’s position (xR, yR) and orientation θR from a
set of good matches M (i.e., matches for which e∗ is below a
certain threshold). For each reference view i ∈ M , we denote
its known absolute location and orientation (xi, yi, φi), and
its epipolar angles derived from the matching curve with the
robot’s current view as θ∗i and φ∗i .

We first estimate the robot’s heading θR. For each i ∈ M
we get a separate estimate

θRi
= φi − θ∗i + φ∗i . (8)

We combine these estimates using a weighted average, where
the weights reflect the match quality.

The next step is to find the robot’s position. Given an
estimate for its location (xR, yR) and the known position
(xi, yi) of reference view i, the line connecting the two has
orientation

γi = arctan
yi − yR

xi − xR
. (9)

From the match of these two views we also obtain a measured
value for this angle:

γ∗i = φi − φ∗i . (10)

Our goal is thus to find the robot position that minimizes the
error function

O(x, y) =
∑
i∈M

‖γ∗i − γi‖2. (11)

See Figure 9 for illustration. We solve this non-linear mini-
mization problem using the Levenberg-Marquardt algorithm.

We have also implemented a different localization algorithm
that computes a weighted average of the intersection points
of the lines associated with all pairs of γ∗ values. The two
algorithms yield comparable results in practice.

C. Navigation

Given a goal location, the robot first plans a path from its
current location to the goal, then travels it while orienting itself
using reference views. For simplicity, our current path planner
uses the graph of “visibility” edges between reference views,
i.e., edges between reference views that can be matched.
This graph is constructed once and stored. Notice that the
localization scheme described above permits navigation in
areas that are not part of this graph.
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Fig. 9. Localization based on direction constraints. Solid lines represent
possible robot locations based on the epipole angles derived from a match with
each reference view i. The optimal robot location minimizes the difference
between measured angles γ∗i and measured angles γi.

For each navigation task, the robot’s estimated position and
the goal location are added to the visibility graph, and the
shortest path is computed using Dijkstra’s algorithm. This path
is approximated with a small set of straight-line segments,
which form the robot’s target trajectory. The robot then
navigates along this trajectory while localizing itself in real
time using nearby reference frames. In each localization cycle,
the robot tries to match up to 12 reference frames with the
goal of achieving 5 good matches, from which the location is
estimated. We have found that this achieves a good balance
between accuracy and speed. Each cycle takes typically less
than 1 second (on the robot’s 500MHz processor), allowing
the robot to travel at an average speed of about 20 cm/s.

D. Discussion

Our experiments demonstrate that the robot can success-
fully navigate various indoor environments in the presence
of moderate scene and illumination changes, some occlusion,
and repeating patterns. Large amounts of occlusion or uneven
surfaces can hinder the matching. Strong lighting changes
(e.g., day vs. night), however, can be handled by storing
multiple reference views, whose timestamps allow the robot
to select which views to match first. Featureless areas such as
long corridors can be ambiguous globally, but usually contain
enough information for local navigation when the robot has
an estimate of its position.

V. CONCLUSION

We have presented a new method for navigation and lo-
calization of a mobile robot using one-dimensional panoramic
images. Our method employs scale-space features and uses cir-
cular dynamic programming for image matching. The reduced
dimensionality allows dense sampling of reference views and
real-time analysis of views. We have presented a new method
for computing the relative orientation and position of two
views from the omnidirectional matching curve. Accurate
robot localization is achieved by combining the angle and
distance estimates from a small set of nearby reference views.
Experimental results demonstrate that mobile robot navigation
from 1D panoramas is feasible in indoor environments in the

presence of lighting changes, repeating patterns, and some
occlusion.

In future work we will explore ways to reduce the number
of stored reference views by analyzing the redundancy of the
data. The goal is to achieve a sparser sampling of both view-
points and lighting conditions without affecting the navigation
reliability.
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