
To appear in the International Journal of Robotics Research, 2004

Expected Shortest Paths for Landmark-Based

Robot Navigation

Amy J. Briggs1 Carrick Detweiler1 Daniel Scharstein1

Alexander Vandenberg-Rodes2

1 Middlebury College, Middlebury VT 05753, USA
2 Princeton University, Princeton NJ 08544, USA

Abstract

In this paper we address the problem of planning reliable landmark-
based robot navigation strategies in the presence of significant sensor
uncertainty. The navigation environments are modeled with directed
weighted graphs in which edges can be traversed with given probabil-
ities. To construct robust and efficient navigation plans, we compute
expected shortest paths in such graphs. We formulate the expected
shortest paths problem as a Markov decision process and provide two
algorithms for its solution. We demonstrate the practicality of our
approach using an extensive experimental analysis using graphs with
varying sizes and parameters.

1 Introduction

Reliable strategies for mobile robot navigation using visual landmarks must
be robust in the face of significant uncertainty in landmark detection. Vary-
ing lighting conditions, temporary occlusion, and unreliability of landmark
recognition are all factors that contribute to such uncertainty, whether the
visual landmarks are artificial or extracted from the environment. This pa-
per presents algorithms and experimental results for computing expected
shortest paths for use in navigation between landmarks. The paper builds
on our real-time landmark detection system [26] and on our vision-based
navigation framework [7, 8]. Here we extend our prior work with significant
contributions to the understanding of probabilistic navigation. First, we
present two algorithms for the solution to the expected shortest paths prob-
lem and prove their convergence. Second, we present a careful analysis of the
properties of the two algorithms, with an extensive empirical evaluation of

1

their performance in practice. We first review the natural graph formulation
of the problem, and then show how the problem can be concisely described
as a Markov decision process.

The specific problem we address is the following. We assume an un-
mapped indoor environment (such as a factory floor or hospital) in which
a mobile robot must repeatedly navigate. To enable the robot to local-
ize itself quickly and then navigate in this space, the environment is en-
hanced with artificial visual landmarks. During an initial exploratory phase
the robot systematically visits all landmarks and constructs their visibility
graph. This graph is continually updated during subsequent navigation. All
motion paths are planned from landmark to landmark, moving along the
visibility edges of the graph. Because landmark detection is unreliable, each
edge is annotated not only with its length, but also with an estimate of the
probability that the target landmark can be detected. These estimates are
based on the history of all observations made by the robot, and are updated
as the robot navigates the environment. Given such a graph, planning an
optimal path to a goal landmark involves solving the expected shortest path
(ESP) problem, i.e., computing the expected lengths of the shortest paths
from all nodes to the goal. Using probabilistic techniques, our navigation
system constructs reliable and efficient motion plans in the presence of oc-
clusion, unreliability of landmark detection, and variations in visibility due
to changes in the environment over time.

The ESP algorithms can be applied to important problems in other do-
mains as well. For example, probabilistic graphs can be used to model com-
munication networks in which individual links can fail. The ESP algorithms
could then be used for optimal package routing given continually changing
models of link reliability. Another application is that of traffic planning in
a road network where some roads may be closed due to poor weather, acci-
dents, congestion, road construction, or other temporary interruptions (e.g.,
draw bridges or railway crossings). The ESP formulation can also be applied
to other robot path planning problems, for example to configuration-space
planning in uncertain or changing environments.

After reviewing related work in Section 2, we define the expected short-
est path problem and give two algorithms for its solution in Section 3. We
then present the Markov decision process formulation of the problem and
analyze the properties of the algorithms, value iteration and policy iteration,
in Section 4. We report on our experimental results evaluating the perfor-
mance of the algorithms on large sets of graphs in Section 5, and conclude
with ideas for future work in Section 6.

2

2 Related work

Techniques for mobile robot navigation based on landmarks include those
planned within a geometric environment map enhanced with perceptual
landmarks [14, 19], and those based on a topological description of land-
mark locations without a global map [21, 27, 33]. Many research groups
have used artificial landmarks that can be easily and unobtrusively added
to the environment for localization and navigation tasks [3, 15, 30].

Shortest-path problems involving probabilistic or stochastic graphs have
been considered in a variety of fields, including computer networks, oper-
ations research, transportation science, and artificial intelligence. In com-
puter networks, one can model a communication network with a graph in
which each link has a certain probability of failing. Most work in this cat-
egory assumes that graphs are stationary, i.e., unpassable edges do not
become passable and vice versa. Typical problems in this context are to
compute the probability whether two or all nodes are connected [9, 24, 32],
or the expected cost of shortest paths between nodes [22, 18]. In contrast,
in our problem the state of an edge can change as the robot traverses the
graph, and the notion of the shortest path is directly linked to the robot’s
navigation strategy.

A different category of related work involves finding shortest paths in
stochastic graphs where the cost of each edge is a random variable, which
may be time-dependent. This is a common problem in operations research
and transportation science [10, 12]. For example, one might seek an optimal
path in a stochastic, time-dependent graph such as a train network with
given (but perhaps unreliable) arrival and departure schedules. The objec-
tive could be to minimize the expected travel time [1, 12], or to maximize a
more general arrival-time utility function [2, 16].

Most relevant to the work presented in this paper are results from opera-
tions research and AI on stochastic shortest-path problems that are instances
of Markov decision processes (MDPs). Bertsekas and Tsitsiklis [4] analyze
a general class of stochastic shortest-path problems, where at each node one
must select a probability distribution over all possible successor nodes, and
where the edge weights may be both positive and negative. They provide
convergence and optimality results related to those in Section 4 below, but
in a more general setting, and without an analysis of convergence speed.
Bonet and Geffner [6] provide optimality guarantees for real-time dynamic
programming (RTDP), an approximation algorithm using a heuristic func-
tion for solving stochastic shortest-path problems, and show experimental
evidence that RTDP outperforms value iteration in some domains.

3

In contrast, the results presented in this paper relate to the specific MDP
arising from the robot’s navigation strategy, and to the relative performance
of the value iteration and policy iteration algorithms in this domain.

In the robotics community, several researchers have used partially ob-
servable MDPs (POMDPs) for robot localization and navigation [28, 29, 31,
33]. These approaches model the robot’s state with a probability distribu-
tion, as opposed to our method, which assumes a known state. However,
POMDPs are computationally intractable [17], and require approximate so-
lutions such as a discretization of the state space [29] or “coastal navigation”
[31]. MDPs and POMDPs have also been proposed for hierarchical robot
control [23].

Also related is the work of Blei and Kaelbling [5], who describe Markov
decision processes for finding shortest paths in stochastic graphs with par-
tially unknown topologies. Their work differs from ours in that they assume
that an edge is either passable or not, but that the state of each edge is only
known with a certain probability.

Finally, probabilistic graphs also appear in the context of probabilistic
road-map planning (PRM). For example, Kavraki and Latombe [13] propose
a randomized method for configuration space preprocessing that generates
a network of collision-free configurations in a known environment, while
Overmars and Švestka [20] describe a similar probabilistic learning approach
that extends to a number of motion planning problems.

3 The expected shortest paths problem

We assume an environment augmented with N visual landmarks a, b, c, . . .
that can be detected by the robot, albeit unreliably. We assume an edge
from landmark a to landmark b has associated probability pab ∈ [0, 1] and
length lab > 0. The probability pab represents the likelihood that landmark
b can be detected from landmark a; the length lab represents a measure of
cost to traverse the edge (e.g., time of travel). We assume that the robot can
only travel to landmarks that are currently visible. Thus, the probabilities
pab more generally represent the likelihoods that edges are passable.

The robot, at any given landmark (or node) n, must choose among the
currently visible landmarks (i.e., passable edges) where to travel to next.
It also has the option of staying at the current node, and waiting for new
landmarks to become visible. If no edge is currently passable, this is the only
option. We represent the possibility of staying with a self-edge at each node
n. Since staying is always an option, the associated probability is pnn = 1.

4

To prevent the robot from staying at a landmark indefinitely, we associate
with the self-edge a non-zero cost lnn > 0, for example, the time it takes to
acquire a new image and to search it for landmarks.

A navigation task in such a probabilistic graph is specified by a designated
goal node g that the robot wants to reach from its current node. In a non-
probabilistic graph, the optimal paths from all nodes to the goal can be
computed easily, for example using Dijkstra’s shortest-path algorithm. At
any given node in such a graph, the robot would then always take the single
edge yielding the shortest path. In our case, however, the robot at a given
node has to choose among the currently passable edges the one yielding the
path with shortest expected length, or expected shortest path (ESP). Thus,
solving the ESP problem involves computing for each node a strategy or
policy that ranks the outgoing edges by their respective ESP lengths.

3.1 Building the visibility graph

Before presenting the ESP equations and the algorithms for their solution,
we briefly discuss how the visibility graph can be constructed and how length
and probability factors can be estimated and maintained. Clearly, once a
visibility edge has been traversed by the robot, its length lij is known and
can be stored. When artificial landmarks with known size are used we can
also estimate the lengths of edges that have not yet been traversed, based on
the size of the landmark in the image. Such estimates are immediately avail-
able with each new visibility edge, and can be replaced with the measured
distance once the edge has been traversed.

Estimates for the probabilities pij (that landmark j is visible from land-
mark i) can be derived from the history of observations of landmark j from
landmark i. Note that observation histories can have “leading zeros”; that
is, even if j was not visible the first few times an observation was made from
landmark i, it is possible to reconstruct the complete observation history for
j by keeping track of all observations ever made at landmark i.

If we assume independent observations made with a fixed probability pij ,
the optimal estimate for pij is the ratio of detections to the total number
of observations. In reality, however, the observations will neither be inde-
pendent, nor will the pij stay constant over time. While some failures to
detect a landmark will have truly random causes (for example, occlusion by
a person walking by), others will be caused by lighting changes throughout
the day, or perhaps even by permanent changes to the environment (most
extremely, the removal or addition of a landmark). Typically, observations
closely spaced in time will be highly correlated. Therefore, in practice, a

5

Eag

Ebg

nap

pnb

l nb

a

b

n

l na

pnn =1
nnl >0

g

Figure 1: A node n with self-edge and two outgoing edges to nodes a and b.
All edges have lengths lij and probabilities of being passable pij . We wish
to compute the expected lengths Eig of the shortest paths from each node
i to goal g. The four possible visibility scenarios at node n are reflected in
Equation 2.

more sophisticated estimate should be used, perhaps taking into considera-
tion the time stamp of each observation.

3.2 The ESP equations

We now assume that current estimates of all lij and pij are available and
turn to the problem of computing the expected shortest paths.

Given a goal node g, we define the ESP problem to compute for each
node n the expected length Eng of the shortest path from n to g. Clearly,

Egg = 0. (1)

We now derive equations that recursively relate the N−1 unknowns Eng,
for all n �=g.

Consider first a node n with two outgoing edges n → a and n → b
(see Figure 1). The robot, upon arriving at n, will be faced with one of
four visibility scenarios, depending on which of a and b can be detected.
Suppose for example that a is visible but b is not. This scenario occurs with
probability pna pnb, where p denotes (1− p). Given this situation, the robot
has two options: to go to a, or to stay at n. (The latter may be desirable
if b is usually visible and yields a much shorter path.) The expected total
length of the path through node a is lna + Eag, while the expected total
length of staying at node n is lnn + Eng. For notational convenience, let

Li
ng = lni + Eig

6

denote the total expected length of the path from n to g through i. The
length of the shortest expected path (with b not visible) is then min(La

ng, L
n
ng),

i.e., the smaller of the two candidate lengths. We can now write the com-
plete equation for Eng by weighting the shortest candidate path with its
corresponding probability in each of the four visibility scenarios:

Eng = pna pnb L
n
ng (2)

+ pna pnb min(La
ng, L

n
ng)

+ pna pnb min(Lb
ng, L

n
ng)

+ pna pnb min(La
ng, L

b
ng, L

n
ng).

It is easy to see how this equation generalizes to nodes with more than two
outgoing edges. In particular, a node with k outgoing edges n → a, n →
b, . . . , n→ z yields an equation with 2k terms:

Eng = pna pnb . . . pnz L
n
ng (3)

+ pna pnb . . . pnz min(La
ng, L

n
ng)

+ pna pnb . . . pnz min(Lb
ng, L

n
ng)

+ pna pnb . . . pnz min(La
ng, L

b
ng, L

n
ng)

+ . . .

+ pna pnb . . . pnz min(La
ng, L

b
ng, . . . , L

z
ng, L

n
ng).

We thus have a system of N −1 equations that recursively relate the
N −1 unknowns Eng, n �= g. Because of the minimum expressions the
system cannot be solved directly. Note, however, that Equation 3 could be
written as a linear equation with only k terms if the ordering among the
candidate lengths Li

ng were known. This observation plays an important
role in our algorithms, so we will elaborate a bit.

Going back to the simpler Equation 2, consider the possible orderings
among La

ng, L
b
ng, and L

n
ng. While one can deduce that Ln

ng cannot be the
smallest of the three, each of the remaining four orderings is possible:

La
ng ≤ Lb

ng ≤ Ln
ng, La

ng ≤ Ln
ng ≤ Lb

ng, (4)

Lb
ng ≤ La

ng ≤ Ln
ng, Lb

ng ≤ Ln
ng ≤ La

ng.

Assume for example that the first of these orderings holds: La
ng ≤ Lb

ng ≤ Ln
ng.

Such an ordering translates literally into a navigation strategy for a robot
at landmark n: go to landmark a if possible (visible); if not, try to go to b
if possible; else remain at n. Given this ordering, Equation 2 simplifies to

Eng = pna L
a
ng + pna pnb L

b
ng + pna pnb L

n
ng. (5)

7

A final observation: if Ln
ng is not last in the ordering, the subsequent terms

in the equation drop out since pnn = 1 (the self-edge can always be taken)
and thus pnn = 0. For example, given the ordering Lb

ng ≤ Ln
ng ≤ La

ng,
Equation 2 simplifies to:

Eng = pnb L
b
ng + pnb L

n
ng. (6)

3.3 Algorithms for the ESP problem

To solve the ESP problem, we have developed variants of two algorithms
commonly used to solve Markov decision processes (MDPs) (see Section 4
below). Borrowing the names from the MDP literature, these are value
iteration (VI) and policy iteration (PI). Here we describe our algorithms in
terms of the above notation. We then analyze some of their properties in
the context of an MDP formulation in the next section.

Value iteration

Recall that our goal is to solve the system of N−1 equations, each of the
form of Equation 3. Collecting the N−1 unknowns Eng, n �= g, into a vector
v we can write the entire system of equations concisely:

v = F (v). (7)

Thus, the desired solution v of this system of equations is a fixed point of
function F . The value iteration algorithm finds this fixed point by treating
Equation 7 as an iterative process

v(n+1) = F (v(n)). (8)

In [7] we have shown that this process converges to a unique fixed point v∗

given an initial value v(0) = 0, if there exists a path with non-zero prob-
abilities from each node to the goal. Convergence is geometric once the
current value is in the vicinity of the fixed point. The idea of the proof is to
show that each component of v(0), v(1), v(2), . . . forms a bounded increasing
sequence, and thus has a limit; see [7] for details.

For an efficient implementation, we use the observation about orderings
made in the previous section. That is, to evaluate Equation 3 for a node n
with out-degree k, we first sort the candidate lengths Li

ng in O(k log k) time,
and then evaluate the resulting linear equation in O(k) time. The total time
for one iteration of Equation 8 is thus almost linear in the total number of
edges in the graph E.

8

Policy iteration

The idea of the second algorithm is to hypothesize edge orderings (as in
Equation 4) at all nodes, and to solve the resulting linear system of Equation
7. The process is then repeated, using the previous solution to determine
the new edge orderings. The iteration terminates when the solution to the
current system of equations yields the same orderings as the previous solu-
tion. The name of the algorithm, policy iteration, reflects that instead of
iterating over the values of the expected lengths, we iterate over the order-
ing of the expected lengths of the outgoing paths at each node. Recall that
these orderings represent strategies (or policies) for the robot when faced
with different visibility scenarios at a node.

Note that while each iteration of the VI algorithm requires evaluat-
ing N − 1 linear equations (which together with the sorting step takes
O(N2 logN) time for dense graphs), each iteration of the PI algorithm re-
quires solving this linear system, requiring a total time of O(N3) for dense
graphs. As we show in Section 5, however, the PI algorithm is competitive
since it converges in very few iterations.

Analyzing the convergence properties of the policy iteration algorithm
is easiest in the context of a Markov decision process (MDP) formulation,
which we present next.

4 MDP formulation

The ESP problem can be formulated nicely as a Markov decision process
(MDP). In brief, a MDP consists of a set of states S, and a set of allowable
actions As for each state s ∈ S. Each action α ∈ As taken in state s
yields a reward r(s, α), and results in a new (random) state s′ according
to a transition probability distribution p(·|s, α). The objective is to devise
a policy with a stationary decision rule δ : S → As that selects a certain
(fixed) action in each state so as to optimize a function of the total reward.
This brief discussion ignores many common variations of MDPs, including
time-dependent or discounted rewards, and non-stationary policies. For a
comprehensive introduction to Markov decision processes, see the book by
Puterman [25].

The ESP problem specifically translates into a non-discounted negative
expected total-reward MDP. This means that each reward is interpreted as
cost or penalty, and that the objective is to minimize the total expected
cost. Upon reaching the goal g, no further cost is incurred.

In our case, the set of states S is the collection of landmarks. The

9

concept of an allowable action at a landmark is slightly more complicated:
it is not simply a destination landmark the robot should go to (which may
not always be visible), but rather a strategy telling the robot what to do in
any visibility scenario. Of course, such strategies correspond to the familiar
edge orderings from Equation 4. Thus, the set of allowable actions As at
landmark s is the set of all orderings among the outgoing edges of s.

For example, suppose the robot is at a node s with three outgoing edges
s→ a, s→ b, s→ c. Then an example of α ∈ As would be: go to landmark
c if possible; otherwise, go to landmark a if possible; otherwise, remain at s
(take the self-edge) and try again. We notate this as α = s : c, a, s. A robot
following this action (strategy) will end up at c, a, or s, depending on the
visibility scenario. The transition probabilities are thus

p(c|s, α) = psc (9)
p(a|s, α) = psc psa

p(s|s, α) = psc psa.

The expected cost for α is simply the expected length for this action

r(s, α) = psc lsc + psc psa lsa + psc psa lss. (10)

Note that p(i|s, α) = 0 for any other landmark i since the self-edge can
always be taken. We can therefore write the expected cost for action α as

r(s, α) =
∑
i∈S

lsi p(i|s, α). (11)

A decision rule (or policy) δ assigns to each landmark one action (strat-
egy) α. Under a given policy, the robot traverses the graph until it reaches
the goal landmark. We assume the action at goal g is always α = g : g,
and r(g, α) = 0. Since we wish to find the expected shortest path, we seek
a policy that minimizes the total expected cost, i.e., the sum of the costs
accrued by the actions leading to the goal.

We now derive the total expected cost for a given decision rule δ. Let
us denote the landmarks x1, . . . , xN . Let rδ be the vector containing the
expected cost for the action given by δ at each of the N landmarks. That
is, entry s of rδ is

rδ[s] = r(s, δ(xs)). (12)

Let Pδ be the N ×N transition probability matrix under the decision rule
δ, i.e., the entry at row s and column d is

Pδ[s, d] = p(xd|xs, δ(xs)). (13)

10

Now define the j-step transition probability matrix jPδ such that jPδ[s, d] is
the probability of arriving at xd after j transitions from xs. The probabilities
after j + 1 steps are then

j+1Pδ[s, d] =
N∑

i=1

jPδ[s, i] p(xd|xi, δ(xi)) (14)

=
N∑

i=1

jPδ[s, i] Pδ[i, d],

and therefore j+1Pδ = jPδ Pδ. Since 1Pδ = Pδ, we get by induction

jPδ = P
j
δ . (15)

The vector of expected costs for the first transition is just rδ. It is easy
to see that the costs for the second transition are Pδ rδ; for the third, P 2

δ rδ,
etc. The vector vδ of total expected costs for δ is thus the infinite sum

vδ =
∞∑
i=0

P i
δ rδ. (16)

Expanding this sum we get

vδ = rδ + Pδ rδ + P 2
δ rδ + P

3
δ rδ + . . .

= rδ + Pδ(rδ + Pδ rδ + P 2
δ rδ + . . .),

and thus
vδ = rδ + Pδ vδ. (17)

So, given a decision rule δ we can compute the expected lengths by solving

(I − Pδ) vδ = rδ. (18)

We now ask the question “which policy results in the shortest total ex-
pected lengths?” and present our two algorithms, value iteration and policy
iteration, in this MDP formulation. The difference between the two is that
VI iterates over the expected lengths v, while PI iterates over the policies δ.

4.1 Value iteration

The value iteration algorithm computes a sequence of values v(0), v(1), . . . ,
as follows:

11

1. Choose an initial v(0), and set n = 0.

2. Compute

v(n+1)[k] = min
α∈Axk

(
r(xk, α) +

N∑
i=1

p(xi|xk, α) v(n)[i]

)
. (19)

3. If v(n+1) is very close to v(n), then terminate and return the policy δ
consisting of the minimizing actions α for all nodes. Else, increment
n by 1, and go to step 2.

When written in matrix form, Equation 19 becomes

v(n+1) = min
δ
(rδ + Pδv

(n)), (20)

which parallels Equation 8 in Section 3.3. Our convergence result from
[7] guarantees that Equation 20 has a unique fixed point v∗, and that the
sequence v(n) converges monotonically to v∗ when v(0) = 0.

4.2 Policy iteration

The policy iteration algorithm computes a sequence of policies δ(0), δ(1), . . . ,
as follows:

1. Choose an initial policy δ(0), and set n = 0.

2. Solve (I − Pδ(n)) v(n) = rδ(n) for v(n).

3. If δ(n) is in the set

D = argmin
δ
(rδ + Pδv

(n)),

then terminate and return δ(n). Else choose some δ(n+1) ∈ D, incre-
ment n by 1, and go to step 2.

We now turn to the convergence proof. It turns out that for general non-
discounted negative expected reward MDPs, the policy iteration algorithm
does not always converge to the optimal policy [25]. Given the conditions
in our model, however, it does.

We will first prove the following lemma, analog to Proposition 7.3.13 in
the text by Puterman [25].

12

Lemma 1 For each iteration n in policy iteration, v(n+1) ≤ v(n) (where the
inequality applies component-wise).

Proof: By step 3 in the policy iteration algorithm, if δ(n) is in the set D,
then v(n+1) = v(n). If δ(n) is not in D, then

rδ(n+1) + Pδ(n+1)v(n) ≤ rδ(n) + Pδ(n)v(n) = v(n). (21)

Because all entries of P k
δ(n) are non-negative for every k > 0, we can substi-

tute rδ(n+1) + Pδ(n+1)v(n) for v(n) in the above inequality, giving:

rδ(n+1) + Pδ(n+1)(rδ(n+1) + Pδ(n+1)v(n)) (22)

= (I + Pδ(n+1))rδ(n+1) + P 2
δ(n+1)v

(n) ≤ v(n). (23)

So by induction,

(
K−1∑
k=0

P k
δ(n+1)rδ(n+1)) + PK

δ(n+1)v
(n) ≤ v(n) (24)

for any positive K. Since all entries of v(n) are non-negative,

K−1∑
k=0

P k
δ(n+1)rδ(n+1) ≤ v(n) (25)

for K > 0. Taking the limit as K goes to infinity gives

∞∑
k=0

P k
δ(n+1)rδ(n+1) ≤ v(n). (26)

Therefore by Equation 16, v(n+1) ≤ v(n). ✷

We are now prepared to prove our main theorem:

Theorem 1 Given the above model and an initial policy δ(0) such that vδ(0)

is finite, policy iteration converges to a policy δ with minimal vδ.

Proof: Suppose we start with some δ(0) such that v(0) is finite. By Lemma 1,
for each iteration n, v(n+1) ≤ v(n). There are finitely many edges in the
graph, so there are only finitely many decision rules (since each decision
rule is an ordering of the edges). Since the sequence v(n) is non-increasing
and no decision rule appears twice, the algorithm must terminate, because
there exists an optimal decision rule. When it does at the n-th iteration, δ(n)

13

...

...

...

...

...

xn xk xk-1 g

Figure 2: Every landmark xn is part of a chain of landmarks that leads to
goal g.

is in argmin(rδ +Pδv
(n)), so v(n) = min(rδ +Pδv

(n)). Our fixed-point result
from the VI algorithm then guarantees that we have the optimal decision
rule δ. ✷

The remaining problem is to find an initial policy δ(0) that yields finite
expected costs vδ(0) . Note that there are many policies that yield infinite
expected costs. Intuitively, such policies can “trap” the robot within a
subgraph from which it cannot reach the goal. The simplest example is a
policy containing an action α = s : s that commands the robot to always
stay at a node s. Circular traps such s : t, s and t : s, t are also possible.

A policy δ with finite vδ can easily be constructed, however, using a
breadth-first search that starts at the goal node g and follows the edges in
reverse direction. Initially, the action α = s : g, s is assigned to each node
s that has a direct edge to the goal. Recursively, actions α = s : b(s), s are
then assigned to other nodes s, where b(s) denotes the node’s predecessor
in the search (i.e., a node one step closer to the goal).

The above algorithm performs a backwards search through every edge,
and thus takes O(E) time, where E is the number of edges in the graph.
It assigns actions that impose a (non-circular) tree structure on the graph,
with goal g forming the root of the tree (see Figure 2). In particular, each
node xn is part of a chain of nodes leading to the goal

xn → . . .→ xk → xk−1 → . . .→ g.

Assume xk and xk−1 are two successive nodes along that chain. By Equa-
tion 17,

v[k] = r(xk, α) + pxkxk−1
v[k − 1] + pxkxk−1

v[k], (27)

so
v[k] =

r(xk, α)
pxkxk−1

+ v[k − 1]. (28)

14

Actual shortest paths (Dijkstra):

Policy Length
a : b 10
b : g 6
c : g 4

Expected shortest paths:

Policy Length
a : c, b, a 11.94
b : g, c, b 7.90
c : g, c 4.25

Figure 3: A sample graph and its actual and expected shortest path lengths
to goal node g. The top number on each edge represents the probability, the
bottom number the length.

Since the probabilities for each landmark are non-zero, and the costs are
finite, by induction from the goal landmark g, each v[k] through v[n] is
finite. Therefore the above breadth-first search algorithm gives a suitable
starting policy δ(0) for the policy iteration algorithm.

We now have convergence proofs for both VI and PI algorithms, and also
an algorithm for constructing an initial policy for PI. To our knowledge, no
theoretical results exist about the convergence speed of either algorithm.
Thus, in order to assess the practicality of both VI and PI algorithms, we
now turn to our empirical evaluation.

5 Experiments

We have implemented both the value iteration and policy iteration algo-
rithms, and have performed an extensive experimental evaluation to assess
their respective performance. Our implementation is in C, and we use Mat-
lab for solving the linear system of equations in the policy iteration algo-
rithm.

15

As a first step in both algorithms we compute the actual shortest paths
(ignoring the probabilities) using Dijkstra’s shortest path algorithm. This
is done for several reasons: First, in a graph that is being constructed by
a robot exploring the environment, the goal may not be reachable from
all nodes (e.g., from nodes that the robot has only seen but not yet vis-
ited). Running Dijkstra’s algorithm will identify these nodes, which can
then be removed before solving the ESP problem. Second, the lengths of
the actual shortest paths are lower bounds on the lengths of the expected
shortest paths, and can be used as better initial estimates for the unknowns
Eng for the value iteration algorithm. (Since the VI convergence proof is
based on bounded increasing sequences, it extends to any start value that is
component-wise smaller than the solution.) Finally, for policy iteration, it
turns out that the actual shortest paths provide an alternate way of finding
an initial policy that yields finite expected lengths, and thus a solvable sys-
tem. While the breadth-first search algorithm from Section 4.2 for finding
an initial policy is asymptotically faster, extra memory and time are needed
to establish back-pointers along all edges before the actual search, which are
not required by Dijkstra’s algorithm. In practice, we have found that the
two methods have very similar running times.

Figure 3 shows a small sample graph together with its actual and ex-
pected shortest paths, and corresponding policies.

For testing purposes we have generated more than 50,000 graphs with
different properties, including number of nodes N , number of edges E, and
range of probability values. Graphs used have up to 3000 nodes, and graph
densities range from sparse (E ∝ N) to dense (E ∝ N2). The probabil-
ity values are drawn from uniform distributions characterized as very low
(0.0001–0.001), low (0.0001–0.5), full (0.0001–1), high (0.25–1), or very high
(0.75–1). The graphs were generated by allocating N nodes, and adding E
edges between random pairs of nodes. Additional edges were then added
between disconnected components until the goal node was reachable from
all other nodes.

Below we report on our results on such graphs. We have also exper-
imented with other graph structures, including large diameter “corridor”
graphs, and “multi-room” graphs (sparsely connected collections of highly
connected subgraphs, simulating the visibility graphs of multi-room build-
ings), but have not found significant differences in convergence.

The plots shown in Figure 4 measure the number of iterations necessary
for VI and PI as a function of the number of nodes N in the graph. Each
plot shows the results of 1250 individual experiments on random graphs with
up to 2500 nodes. We have performed such experiments for many different

16

Iterations vs. number of nodes N

VI

10

100

1000

10000

100000

1000000

0 500 1000 1500 2000 2500
10

100

1000

10000

100000

1000000

0 500 1000 1500 2000 2500

PI

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

Sparse graphs Dense graphs

Figure 4: Number of iterations for VI (first row) and PI (second row) al-
gorithms as a function of the number of nodes in the graph. The plots on
the left show results for sparse graphs (E ≈ N), the plots on the right show
results for dense graphs (E ≈ N2/15).

types of graphs and parameters. The plots in Figure 4 contrast sparse
graphs (E ≈ N) with dense graphs (E ≈ N2/15), both with full random
probabilities (ranging from 0.0001 to 1). Examining the plots in the first
row of Figure 4, it can be seen that the value iteration algorithm requires
large numbers of iterations (often upwards of 10,000) on sparse graphs, while
it converges much faster on dense graphs (typically within a few hundred
iterations). The likely reason for this is that changes in the variables can
propagate much faster in densely connected graphs. Note that the initial
“peak” in the second plot is due to our definition of “dense” as E ≈ N2/15,
which for small N still results in fairly sparse graphs. Interestingly, the
average number of iterations for dense graphs does not increase with larger
values of N — if anything, there is a slight decrease.

Results for the policy iteration algorithm (shown in the second row of
Figure 4) are vastly different. In all cases, PI only takes very few iterations

17

to converge. While the number of iterations increases with the number of
nodes, the curves flatten out quickly, and the distributions of iterations for
N = 1000 are very similar to those for N = 2500. Even for the largest N ,
most sparse graphs take no more than 6–9 iterations to converge; the dense
graphs rarely take more than 7 or 8 iterations. In fact, among the more
than 50,000 graphs we have generated, only a handful require 11 iterations,
only 3 require 12 iterations, and we have yet to find a graph that requires
more than 12 iterations. As is the case for VI, the distribution of iterations
for dense graphs is narrower and has fewer outliers.

We have also investigated the effect of different probability ranges. Fig-
ure 5 shows the number of iterations of the VI and PI algorithms on sparse
graphs for three different probability ranges: very low (0.0001–0.001), full
(0.0001–1), and very high (0.75–1). The plot on the left shows that the
VI algorithm is strongly affected by the probabilities. In particular, very
low probabilities cause very slow convergence, while very high probabilities
cause very fast convergence. The reason for the latter is that the start val-
ues computed using Dijkstra’s algorithms are very close to the lengths of
the expected shortest paths if all probabilities are high. In our experience,
the extreme case of very low probabilities is unlikely to occur in practical
applications. Similarly unlikely are uniformly high probabilities, and even a
few edges with low probabilities can slow down the convergence.

The PI algorithm, on the other hand, is less affected by the probabilities,
as shown in the plot on the right. In particular, there is no clear distinction
between very low and full probabilities. Uniformly high probabilities do
reduce the number of iterations significantly, but, as argued before, this is
not a typical scenario.

The results of other experiments we have performed are consistent with
the ones reported here. In particular, for PI, the curve defined by the number
of iterations vs. graph size always resembles a logarithmic shape, indicating
that few iterations are necessary even for very large graphs. Also, we have
been unable to construct “pathological cases” that require a certain mini-
mum number of iterations for PI. Value iteration, on the other hand, can
be made to converge arbitrarily slowly by constructing graphs whose edges
all have very low probabilities as shown in Figure 5. Although such graphs
may not be common in practical applications, this is further evidence for
the unpredictability of the convergence speed of VI that is also exhibited in
the top left plot in Figure 4.

We now turn to the actual running times of the two algorithms. Figure 6
shows plots that compare the running times of VI and PI as a function
of N on the same sets of graphs as in Figure 4, using a full probability

18

Iterations vs. number of nodes N

 10

 100

 1000

 10000

 100000

1000000

 0 100 200 300 400 500

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

VI PI

Figure 5: Number of iterations for VI (left) and PI (right) for very low (◦),
full (×), and very high (�) edge probabilities on sparse graphs.

range. All experiments were performed under Linux on a 1.53 GHz Athlon
machine with 512 MB of memory. It can be seen that policy iteration
clearly outperforms value iteration, in particular on sparse graphs, where
PI is faster by several orders of magnitude. Much of this performance gain
can be attributed to using Matlab’s sparse matrix representation and sparse
equation solver. (Using a regular solver for sparse graphs is slower by at least
a factor of 10.) On dense graphs, the margin between PI and VI is much
smaller, since VI takes fewer iterations than it does on sparse graphs, but
PI’s equation solving step requires more work. Even in this case, however,
PI is the winner, running at least a factor of 2 faster than VI. The only
case in which VI outperforms PI is on dense graphs with uniformly high
probabilities, where VI converges very quickly, similar to the results shown
in Figure 5.

It should be noted that the reported running times are process times.
When we measure total time, the running times of PI and VI on dense graphs
become almost identical. The likely reason for this is that the time for PI’s
memory allocation steps are not measured in the process time. Graphs
encountered in real environments span the range of the types of graphs dis-
cussed here. In practical applications, sparse graphs will be more common,
and PI, although slightly more difficult to implement, will be the better
choice.

A practical issue is the memory requirements of the two algorithms. VI,
which only needs to evaluate the system of equations, requires only enough

19

Running times (seconds) vs. number of nodes N

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500

Sparse
graphs

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500

Dense
graphs

Figure 6: Running times in seconds for VI (×) and PI (+) algorithms as a
function of the number of nodes in the graph. The first plot shows results
for sparse graphs (E ≈ N); the second plot shows results for dense graphs
(E ≈ N2/15).

20

memory to store the graph. PI, which needs to solve the system, needs
up to O(N2) space to store the matrix representing this system. Given a
large enough graph, the matrix will be too large to be allocated, making PI
impossible to use. For our implementation and hardware, this happens for
dense graphs upwards of about 2800 nodes. In such situations, VI would be
the only choice. Since we are using Matlab’s sparse matrix representation,
however, the memory is sufficient for much larger sparse graphs. For exam-
ple, a sparse graph with 15,000 nodes and about 25,000 edges can still be
solved using PI in less than 1 second.

6 Conclusion

In this paper we have investigated the expected shortest path (ESP) prob-
lem, which arises in landmark-based robot navigation where the reliability
of landmark detection is modeled explicitly. We have presented two algo-
rithms for its solution, value iteration (VI) and policy iteration (PI), and
have proven their convergence properties in the context of a MDP formula-
tion. Using an extensive experimental analysis, we have demonstrated the
practicality of both algorithms, and have shown that PI usually outperforms
VI. In particular, on sparse graphs, PI is orders of magnitude faster. On very
large dense graphs, however, PI cannot be used due to its larger memory
requirements.

In future work we plan to investigate the application of our algorithms to
navigation using natural landmarks extracted from the environment. Build-
ing on related work in this area [11, 19, 21, 27], we aim to extend our
probabilistic framework to obtain more reliable and efficient path planners
for vision-based robot navigation in arbitrary environments.

Acknowledgments

The authors are grateful for the insights of Steve Abbott and Deniz Sarioz
that contributed to this work, and for the assistance of Darius Braziunas,
Victor Dan, Cristian Dima, Huan Ding, David Ehringer, Dan Knights, Jeff
Lanza, Fafa Paku, and Peter Wall in the implementation of the navigation
framework presented here.

Support for this work was provided in part by the National Science Foun-
dation under grants IIS-0118892, CCR-9902032, CAREER grant 9984485,
POWRE grant EIA-9806108, by Middlebury College, by the Howard Hughes
Medical Institute, and by the Council on Undergraduate Research.

21

References

[1] R. K. Ahuja, J. B. Orlin, S. Pallottino, and M. G. Scutellà. Dynamic
shortest paths minimizing travel times and costs. Networks, 41(4):197–
205, 2003.

[2] J. F. Bard and J. L. Miller. Probabilistic shortest path problems with
budgetary constraints. Computers and Operations Research, 16(2):145–
159, 1989.

[3] C. Becker, J. Salas, K. Tokusei, and J.-C. Latombe. Reliable navigation
using landmarks. In Proceedings of IEEE International Conference on
Robotics and Automation, pages 401–406, June 1995.

[4] D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest
path problems. Mathematics of Operations Research, 16(3):580–595,
1991.

[5] D. M. Blei and L. P. Kaelbling. Shortest paths in a dynamic uncertain
domain. In Proceedings of the IJCAI Workshop on Adaptive Spatial
Representations of Dynamic Environments, 1999.

[6] B. Bonet and H. Geffner. Solving stochastic shortest-path problems
with RTDP. Technical report, UCLA, 2002.

[7] A. Briggs, D. Scharstein, and S. Abbott. Reliable mobile robot naviga-
tion from unreliable visual cues. In Donald, Lynch, and Rus, editors,
Algorithmic and Computational Robotics: New Directions, A. K. Pe-
ters, pages 349–362, 2001.

[8] A. Briggs, D. Scharstein, D. Braziunas, C. Dima, and P. Wall. Mobile
robot navigation using self-similar landmarks. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA
2000), pages 1428–1434, April 2000.

[9] C. J. Colbourn. The Combinatorics of Network Reliability. Oxford
University Press, 1987.

[10] A. Eiger, P. B. Mirchandani, and H. Soroush. Path preferences and op-
timal paths in probabilistic networks. Transportation Science, 19(1):75–
84, 1985.

22

[11] C. Fennema, A. Hanson, E. Riseman, J. R. Beveride, and R. Kumar.
Model-directed mobile robot navigation. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 20(6):1352–1369, 1990.

[12] R. W. Hall. The fastest path through a network with random time-
dependent travel times. Transportation Science, 20(3):182–188, 1986.

[13] L. Kavraki and J.-C. Latombe. Randomized preprocessing of configura-
tion space for fast path planning. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 2138–2145, May 1994.

[14] A. Lazanas and J.-C. Latombe. Landmark-based robot navigation.
Algorithmica, 13(5):472–501, May 1995.

[15] C. Lin and R. Tummala. Mobile robot navigation using artificial land-
marks. Journal of Robotic Systems, 14(2):93–106, 1997.

[16] R. P. Loui. Optimal paths in graphs with stochastic or multidimensional
weights. Communications of the ACM, 26(9):670–676, 1983.

[17] O. Madani, A. Condon, and S. Hanks. On the undecidability of proba-
bilistic planning and infinite-horizon partially observable markov deci-
sion process problems. Artificial Intelligence, 147(1/2):5–34, 2003.

[18] M. Mani, A. Zelikovsky, G. Bhatia, and A. Kahng. Traversing proba-
bilistic graphs. Technical Report 990010, UCLA, 1999.

[19] B. Nickerson, P. Jasiobedzki, D. Wilkes, M. Jenkin, E. Milios, J. Tsot-
sos, A. Jepson, and O. N. Bains. The ARK project: Autonomous mobile
robots for known industrial environments. Robotics and Autonomous
Systems, 25:83–104, 1998.

[20] M. H. Overmars and P. Švestka. A probabilistic learning approach
to motion planning. In Goldberg, Halperin, Latombe, and Wilson,
editors, 1994 Workshop on the Algorithmic Foundations of Robotics,
A. K. Peters, pages 19–37, 1995.

[21] C. Owen and U. Nehmzow. Landmark-based navigation for a mobile
robot. In Proceedings of Simulation of Adaptive Behaviour. MIT Press,
1998.

[22] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a
map. Theoretical Computer Science, 84:127–150, 1991.

23

[23] J. Pineau, G. Gordon, and S. Thrun. Policy-contingent abstraction
for robust robot control. In Proceedings of the 19th Conference on
Uncertainty in Artificial Intelligence, 2003.

[24] J. S. Provan and M. O. Ball. The complexity of counting cuts and of
computing the probability that a graph is connected. SIAM Journal of
Computing, 12(4), November 1983.

[25] M. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, New York, NY, 1994.

[26] D. Scharstein and A. Briggs. Real-time recognition of self-similar land-
marks. Image and Vision Computing, 19(11):763–772, September 2001.

[27] R. Sim and G. Dudek. Mobile robot localization from learned land-
marks. In Proceedings of IEEE/RSJ Conference on Intelligent Robots
and Systems (IROS), Victoria, BC, October 1998.

[28] R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O’Sullivan.
Xavier: An autonomous mobile robot on the web. IEEE Robotics and
Automation Magazine, 1999.

[29] R. Simmons and S. Koenig. Probabilistic navigation in partially observ-
able environments. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1080–1087, 1995.

[30] C. J. Taylor and D. J. Kriegman. Vision-based motion planning
and exploration algorithms for mobile robots. In Goldberg, Halperin,
Latombe, and Wilson, editors, 1994 Workshop on the Algorithmic
Foundations of Robotics, A. K. Peters, pages 69–83, 1995.

[31] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers,
F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte,
and D. Schulz. Probabilistic algorithms and the interactive museum
tour-guide robot Minerva. International Journal of Robotics Research,
19(11), 2000.

[32] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal of Computing, 8(3), August 1979.

[33] F. Zanichelli. Topological maps and robust localization for autonomous
navigation. In Proceedings of the International Joint Conference on
Artificial Intelligence, Workshop ROB-2, 1999.

24

