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ABSTRACT
Untextured scenes with complex occlusions still present chal-
lenges to modern stereo algorithms. We consider the patho-
logical case of Mondrian Stereo—scenes consisting solely of
solid-colored planar regions, inspired by paintings by Piet
Mondrian. We analyze assumptions that allow disambiguat-
ing such scenes and present a novel stereo algorithm employ-
ing symbolic reasoning about matched edge segments. We
demonstrate compelling stereo matching results on synthetic
scenes and discuss how our insights could be utilized in robust
real-world stereo algorithms for untextured environments.

Index Terms— Stereo, untextured scenes, occlusion

1. INTRODUCTION

While there has been tremendous recent progress in stereo
matching [1, 2], current techniques are still challenged by
scenes with complex occlusions and lack of texture (Fig. 1).
In this paper we consider the pathological case of scenes con-
sisting solely of uniformly-colored planar surface patches ar-
ranged in 3D, resembling the abstract paintings by Piet Mon-
drian. Borrowing a phrase first suggested by Richard Szeliski,
we name this problem Mondrian stereo, and present an algo-
rithm for its solution (Fig. 2). The priors and search strat-
egy employed in our algorithm yield important insights that
promise to be useful for robust real-world stereo algorithms.

2. RELATED WORK

Stereo matching has a long tradition [1]. The first algorithms
to successfully handle textureless objects and thin scene struc-
tures utilized color segmentation [4, 5, 6]. More recently,
over-segmentation into superpixels has been used in complex
energy minimization approaches [7, 8]. However, all exist-
ing approaches require at least some scene texture and cannot
handle pure Mondrian scenes where edges between regions
provide the only disparity cues. Dealing with slanted surfaces
makes this even more difficult [9, 10]. While edge-based al-
gorithms were among the earliest stereo methods [11], they
only yield sparse disparity estimates and do not explicitly rea-
son about the disparities of inter-edge regions.
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(a) Left image (b) LW-CNN (c) 3DMST (d) GT disps

Fig. 1. Common failure cases for state-of-the-art stereo meth-
ods (b, c) from the Middlebury stereo evaluation [2]. Com-
paring the results with the ground truth (d) reveals that thin
objects and untextured background regions cause problems.

(a) Left image (b) SGM (c) Ours (d) GT disps

Fig. 2. (a) Synthetic Mondrian scenes devoid of texture. (b)
Standard stereo methods like SGM [3] fail in the absence of
texture and presence of complex occlusions. (c) Our Mon-
drian stereo results, employing symbolic reasoning and pro-
ceeding solely from matched edges. (d) Ground truth.

The failure cases in Fig. 1 reveal that proper depth assign-
ment of disconnected background regions requires reasoning
about object color, which is commonly done in image seg-
mentation [12]. This idea has been applied to stereo match-
ing [13], but proper occlusion reasoning yields higher-order
energy functions that are difficult to minimize.

In this work we propose a symbolic algorithm that uses
edge disparities to constrain and infer disparities of adjacent
surfaces, while also taking color similarity into account. Sim-
ilar to Ishikawa and Geiger [14] we hope to inspire new prior
models for stereo algorithms, partially motivated by observa-
tions about human perception [15, 16, 17].
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Fig. 3. (a) Simple Mondrian scene. (b–d) Multiple valid
depth interpretations of the marked scanline, with different
edge ownerships indicated by semicircles. Note that the only
disparity cues are provided by the square’s vertical edges.

3. ALGORITHM

We now describe our algorithm for Mondrian stereo match-
ing. We first discuss assumptions necessary to disambiguate
Mondrian scenes, then detail the different processing steps.

3.1. Assumptions

We assume as input a rectified stereo pair with known dispar-
ity range d = [0, dmax]. Each stereo pair depicts a Mondrian
scene consisting of single-colored planar surface patches
(segments), arranged in 3D. Segments can be concave and
also can have holes. We assume that adjacent segments have
different colors so that depth discontinuities always give rise
to a color change. Segments with different colors may or
may not be coplanar. The same holds for disconnected seg-
ments with the same color, though in this case we assume
coplanarity is likely.

Since the segments are textureless, non-horizontal edges
between segments are the only source of 3D information. In
general, Mondrian scenes have an infinite number of valid 3D
interpretations (Fig. 3). An important concept is edge owner-
ship: each edge must be owned by at least one of its adjacent
segments [7]. If it is only owned on one side, it forms an ob-
ject boundary (the other side has farther depth); if it is owned
on both sides, it is a surface crease or simply a surface color
change (Fig. 3b–d).

In order to select the most likely interpretation, we need to
make additional assumptions. These assumptions are chosen
to favor 3D interpretations by human observers. While we did
not perform an extensive user study, the “correct” interpreta-
tion chosen by human observers is usually clear and makes
intuitive sense. Our algorithm makes two key assumptions:

1. In the absence of other evidence, each surface is as-
sumed to be as close as possible. That is, we prefer
Fig. 3b (a red square painted on a blue surface) over
Fig. 3d (a red surface seen through a square hole in the
blue surface).

2. We prefer to assign disconnected segments with the
same color to a single surface as long as there is a
valid geometric interpretation (i.e., closer occluding
segments) [13].

(a) Left image (b) L+R edges overlaid

Fig. 4. Edge extraction. In each image locations of color
changes are approximated with polylines.

3.2. Edge matching

The first phase of our algorithm is edge extraction and edge
matching. Given our fairly clean synthetic images, which
only contain a small amount of Gaussian noise, we can extract
segments using a simple union-find connected-component
scanline algorithm. If the sum of the absolute color differ-
ence across bands is less than a threshold λ = 35 for two
neighboring pixels, they are considered part of the same
component.

After components are found, we find all non-horizontal
edges and approximate them with polylines. To do so, we
find edgels (component label changes) on each scanline, and
track these edgels from one scanline to the next, as long as
the component labels stay the same on both sides. Each se-
quences of connected edgels is stored as an “edgel curve.”
We approximate the edgel curve with a sequence of line seg-
ments using the standard split-and-merge algorithm, using a
maximum distance of ε = 1 pixel. Fig. 4 shows an example.

We then match each extracted edge segment in the left im-
age with candidate edge segments in the right image. First we
check that the match hypothesis segment in the right image
has the same colors on both sides within a threshold. To al-
low for partial occlusion of an edge we allow “hallucinating”
edges beyond their endpoints to the maximal vertical extent
of the two edges. If the calculated disparities are outside the
disparity range, the hypothesis fails. We also check for con-
tradictory matches by disqualifying a hypothesis that matches
an edge in the right image to two edges in the left image, back-
tracking over earlier assignments if necessary. If no match is
found for an edge in the left image, the edge is disregarded.

3.3. Plane generation

We generate a disparity plane hypothesis for each component
using two or more non-collinear edge segments attached to
the component. We fit a plane to the (x, y, d) coordinates of
the four endpoints from two edges. We disqualify plane as-
signments that yield disparity residuals above threshold τ1 =
1.0 at any of these four base points, or residuals above thresh-
old τ2 = 1.5 along any of the segment’s other matched edges.
Once a legal assignment is found, we use the remaining edges
of the plane as points to refine the plane fit as long as the
residuals of the refined fit stay within the thresholds. In case



no two edges yield a legal plane fit, the component’s plane
is left uninitialized and is handled in later processing steps
described below.

An important feature of our algorithm is that plane fitting
yields constraints on edge ownership. In this first phase of
the algorithm we seek the closest consistent plane hypothesis
for each component (assumption 1). Thus, each edge that
contributed to the plane fit is tentatively owned by that plane.
Edges can be owned by both adjacent planes (which can be
coplanar or form a crease at that edge), and at most one of
these ownerships might be undone at a later stage. An edge
owned by only one adjacent plane indicates an occluding edge
(an object boundary / depth discontinuity); in this case the
ownership is firm and we consider the endpoints of the edge
fixed points. If a plane has at least three fixed points, it is a
fixed plane whose plane equation cannot change later.

3.4. Component merging

After the first pass we have a tentative assignment of dispar-
ity planes to segments satisfying assumption 1. To account
for occlusions that divide planes into multiple components,
we now turn to assumption 2 and attempt to merge each pair
of like-colored components by assigning them to a common
plane. There are three possible scenarios. First, if one of the
two planes is fixed (has at least 3 fixed points), then the other
plane must coincide (fit with acceptable residuals). If this is
not the case, the two components cannot be merged. Second,
if neither plane is fixed but there are at least 3 fixed points
between the two components, there is only one possible plane
that can fit both original components. If this new plane has
acceptable residuals and is not inconsistent with edge dispar-
ities (does not violate visibility constraints), the two compo-
nents are merged. Finally, if there are less than 3 fixed points
between the two components, we attempt to fit a new plane
using all points owned by the two planes. Only if a new edge-
consistent plane is found, the components are merged.

While plane hypotheses are solely generated from edge
matches, we can optionally utilize any weak texture present
in the scene to choose between competing plane assignments.
This is the only point in our algorithm where we propose to
utilize a “data term.” We demonstrate below that this can help
disambiguate certain difficult scenes. We use as matching
cost the average absolute color difference between the seg-
ments from the two images, aligned by the proposed plane
equation; more robust costs such as NCC or census are clearly
possible. We compare the costs resulting from the original
plane and the proposed new plane merging the components. If
for either component the new plane generates a higher match-
ing cost than the original plane, the hypothesis is disqualified.

For every successful merge hypothesis, we attempt to as-
sign the remaining like-colored components to this new plane,
using the same three checks: acceptable residuals, edge con-
sistency, and (optionally) non-increasing matching costs. For

each complete hypothesis, we calculate the total number of
components that were merged. We compare this count with
the best hypotheses for all other like-colored components and
keep the hypothesis with the highest merge count, i.e., the
lowest number of planes remaining.

In addition to merging disconnected components with the
same color, we also attempt to merge adjacent components
with different colors if their planes are roughly coplanar. If we
can fit a new plane to both segments with acceptable residuals,
we use this joint plane for both components, which simplifies
the scene description and increases its accuracy.

Finally, we also attempt to extend planes into adja-
cent segments with uninitialized planes, which are typically
caused by occlusion. If this does not result in edge incon-
sistencies, we keep the extended plane, otherwise we leave
it uninitialized. Usually at least one edge of an uninitialized
component will generate an edge-consistent extended plane.

4. EXPERIMENTS

Figure 5 shows results for ten challenging Mondrian scenes.
Each row contains the original image pair as well as five dis-
parity maps: comparison results by SGM [3] and ELAS [18],
our initial results after phase 1, our final results after compo-
nent merging, and the ground truth. It can be seen that the
comparison methods (c, d) fail completely in the absence of
texture. Our initial results (e) are already mostly correct, ex-
cept that some segments are assigned to the foreground depth
(scenes 2, 3, 4, 6) due to assumption 1, while other segments
have uninitialized planes (scenes 1, 2, 4, 5, 7, 8) due to un-
matched edges and/or an insufficient number of supporting
edges. Our final results (f) are almost identical to the ground
truth for scenes 1–9 except for minor differences in the plane
equations caused by discretization errors during edge extrac-
tion. Comparing (e) and (f) it can be seen that component
merging is able to both assign correct planes to disconnected
background regions, and propagate planes into partially oc-
cluded regions. Scene 6 demonstrates that utilizing texture
can resolve ambiguous cases such as the depth of the left
two squares, which have the same edge disparities. Scene 7
demonstrates that our edge matching step is able to deal with
ambiguous matches due to repetitive patterns by searching for
a globally consistent solution. Finally, scene 10 demonstrates
a failure case: if segment colors are too similar, multiple scene
surfaces can get merged into a single component (the three
gray “walls” in this example). Our algorithm still finds a valid
geometric interpretation by treating the boundaries as occlu-
sion edges and placing a plane at a greater distance, but the
algorithm is unable to detect and correct the segmentation er-
ror. Human observers, in contrast, readily add the necessary
surface creases to arrive at the correct interpretation with-
out depth discontinuities. This matches the results reported
Ishikawa and Geiger [14].
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Fig. 5. Experimental results on 10 synthetic Mondrian scenes. (a, b) Input images, displayed in reverse order to allow crossed
fusion. (c, d) Results by traditional stereo methods SGM [3] and ELAS [18], which fail due to the lack of texture. (e) Our
results after the first pass, satisfying assumption 1. (f) Our final results after component merging, satisfying assumption 2. (g)
Ground-truth disparities. See Section 4 for a detailed discussion.

5. CONCLUSION

We have presented a novel stereo algorithm that can solve
challenging synthetic image pairs depicting “Mondrian”
scenes consisting of untextured planar 3D objects with com-
plex occlusion relationships. Such scenarios still present
significant challenges for current stereo methods.

Our algorithm proceeds in two stages. It first fits planes
to matched edge segments in order to construct a valid initial
3D interpretation of the visible surface patches in the scene.
It then merges like-colored components, while performing
proper occlusion reasoning, in order to recover larger surfaces
separated by occluding objects. Weak surface texture can op-
tionally be used for disambiguation.

Our long-term goal is to employ similar assumptions and
strategies in robust algorithms for difficult real-world images.
While not all components of our current method will readily
translate to real images (for instance, achieving a consistent
segmentation in both images is difficult), the assumptions we
identified and our multi-step plane reassignment strategy bear
significant promise. Many current stereo methods are formu-
lated as monolithic energy minimization problems [7, 8, 13,
19] that are difficult to optimize. At the same time, their en-
ergy functions are not complex enough to allow complete vis-
ibility reasoning. Solving a sequence of simpler optimization
problems while explicitly reasoning about untextured surface
segments could prove a promising alternative.
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