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Abstract

State-of-the-art stereo vision algorithms utilize color
changes as important cues for object boundaries. Most
methods impose heuristic restrictions or priors on dispari-
ties, for example by modulating local smoothness costs with
intensity gradients. In this paper we seek to replace such
heuristics with explicit probabilistic models of disparities
and intensities learned from real images. We have con-
structed a large number of stereo datasets with ground-truth
disparities, and we use a subset of these datasets to learn
the parameters of Conditional Random Fields (CRFs). We
present experimental results illustrating the potential of
our approach for automatically learning the parameters
of models with richer structure than standard hand-tuned
MRF models.

1. Introduction and related work
In recent years, machine learning methods have been

successfully applied to a large number of computer vision
problems, including recognition, super-resolution, inpaint-
ing, texture segmentation, denoising, and context labeling.
Stereo has remained an exception because of the lack of suf-
ficient training data with ground-truth disparities. While a
few datasets with known disparities are available, they have
mainly been used for benchmarking of stereo methods [1].

The goal of this paper is to replace the heuristic cues used
in previous approaches with probabilistic models derived
from real images. To obtain a sufficient amount of train-
ing data, we used the structured-lighting approach of [2]
to construct a database of 30 stereo pairs with ground-truth
disparities, which we provide for use by other researchers
at http://vision.middlebury.edu/stereo/data/.

In this paper we present a Conditional Random Field
(CRF) model for stereo vision and derive a gradient-based
learning approach that leverages efficient graph-cut mini-
mization methods and our ground-truth database. We then
explore the characteristics and properties of a number of
different models when learning model parameters.

Among the few existing learning approaches for stereo,
the most prominent is the work by Zhang and Seitz [3],
who iteratively estimate the global parameters of a Markov
Random Field (MRF) stereo method from the previous dis-
parity estimates, and thus do not rely on ground-truth data.
Kong and Tao [4] learn to categorize matching errors of lo-
cal methods using the Middlebury images. Kolmogorov et
al. [5] construct MRF models for binary segmentation us-
ing locally learned Gaussian Mixture Models (GMMs) for
foreground and background colors.

While learning approaches have been sparse, there has
nevertheless been much recent progress in stereo vision.
Breakthroughs have been achieved along two avenues.

First, global optimization methods have become prac-
tical with the emergence of powerful optimization tech-
niques. Considered too slow when first proposed, global
methods currently dominate the top of the Middlebury
stereo rankings. In particular, MRF models for stereo have
become popular since high-quality approximate solutions
can be obtained efficiently using graph cuts (GC) [6–8] and
belief propagation (BP) [9–11]. Tappen and Freeman [12]
compare GC and BP for stereo; Szeliski et al. [13] compare
a larger set of MRF minimization techniques and provide
software that we use in our implementation.

The second breakthrough has been the realization of the
importance of intensity changes as a cue for object bound-
aries, i.e., disparity discontinuities. Taken to an extreme,
this translates into the assumption that disparity jumps al-
ways coincide with color edges, which is the basis of a
large number of recent segmentation-based stereo methods
[10, 14–19]. Such methods start with a color segmentation
and then assume that within each segment disparities are
constant, planar, or vary smoothly. This assumption works
surprisingly well if the segments are small enough.

Segmentation is not the only way to utilize this monoc-
ular cue; many pixel-based global methods also change the
smoothness cost (i.e., penalty for a disparity change) if the
local intensity gradient is high [1, 6, 9, 20]. This is the ap-
proach taken here, where we learn the relationship between
intensity gradient and smoothness cost from real images.



The probabilistic models we develop in Section 2 below
are Conditional Random Fields (CRFs). CRFs are obtained
from the conditional distribution defined for a subset of ran-
dom variables in a Markov Random Field. The parameters
of a CRF can then be optimized for a given dataset based on
the corresponding conditional likelihood.

The CRF approach was first articulated for sequence pro-
cessing problems [21]. In the linear models commonly used
in language processing, the feature expectations required
for gradient-based CRF optimization can be computed effi-
ciently [22]. For many graphical models with more complex
structure, however, approximate inference methods must be
used. Dynamic conditional random fields [23] use a factor-
ized set of variables at each segment of a linear-chain CRF,
yielding a shallow lattice-structured model. Approximate
inference and learning methods include loopy belief propa-
gation and tree-based reparameterization [24]. Kumar and
Hebert [25] optimize the parameters of lattice-structured bi-
nary CRFs using a pseudolikelihood approach. Other work
[26] has investigated the discriminative optimization of a
lattice-structured joint random field models using autore-
gression over the pseudolikelihood. These learning meth-
ods use spatially localized approximations to the true global
distributions needed for learning. In contrast, our approach
described in Section 3 uses fast graph-cuts based methods to
compute good approximate global minimizations that corre-
spond to most-probable-explanation (MPE) [27] estimates.
These estimates are then used to create approximate model
expectations required for gradient based learning of model
parameters.

Finally, related work on analyzing motion parallax has
used priors on the probability that an object at a given depth
is visible [28]. As we use a conditional model with un-
normalized factors, there is no explicit prior on the distribu-
tions for disparities in our framework. It is possible within a
discriminative framework to introduce local potential func-
tions that depend only upon local disparity values and play
a similar role to a prior. The influence of such knowledge,
however, can often also be achieved through the parameters
of the local cost and pairwise potentials.

2. CRFs for Stereo
We define the disparity of pixel p ∈ P , the set of all

pixels in the reference (left) image, as a random variable
dp with N discrete but ordered states. Assuming rectified
images, dp represents the horizontal shift in pixels with
respect to the other image. We define cp as a vector of
N continuous random variables representing the matching
cost for each discrete disparity level. In this paper we use
the sampling-insensitive cost of [29], which is the min-
imum distance between the linearly interpolated left and
right scanlines over x± 1/2 at each pixel. For color images
we use the sum of this measure over all color bands. We de-
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Figure 1. The repeating unit used in our graphical model.

fine gpq as an M -state random variable for discretized color
gradients between neighboring pixels (p, q) ∈ N , where N
is the standard 4-neighborhood. We compute the gradients
as the RMS difference between color bands.

We then construct conditional random fields for dispar-
ities D = {d}, matching costs C = {c}, and gradients
G = {g} with the following form

P (D|C,G) =
1

Z(C,G)

∏
p∈P

Φ(dp, cp)
∏

(p,q)∈N

Ψ(dp, dq, gpq),

(1)
where the (conditional) partition function Z(C,G) is ob-
tained by summing over all possible disparity values

Z(C,G) =
∑
d∈D

∏
p∈P

Φ(dp, cp)
∏

(p,q)∈N

Ψ(dp, dq, gpq). (2)

The potential function Φ models the agreement of disparites
and intensities, while Ψ jointly models the smoothness
of neighboring disparities and the color gradient between
them. Figure 1 illustrates the factorization we use for our
models using a factor graph [30].

The CRF described by (1) represents a general formula-
tion. We now present the specific model used in our explo-
ration here in more detail. First, we take the negative log
probability of our model and obtain U and V terms analo-
gous to the data and smoothness terms commonly used in
other energy-based stereo techniques,

U(dp, cp) = − log Φ(dp, cp), (3)
V (dp, dq, gpq) = − log Ψ(dp, dq, gpq). (4)

Our goal is to minimize the sum of the negative log condi-
tional probabilities

− log P (D|C,G) = log Z(C,G) +
∑
p∈P

U(dp, cp)

+
∑

(p,q)∈N

V (dp, dq, gpq). (5)

Note that our formulation, unlike other energy-based stereo
approaches, explicitly accounts for the partition function.



We express cost terms U and pairwise smoothness terms V
using a linear combination of feature functions fu, fv ,

U(dp, cp) =
∑

u

θufu(dp, cp), (6)

V (dp, dq, gpq) =
∑

v

θvfv(dp, dq, gpq), (7)

where θu, θv are the parameters of our model. The nota-
tion follows the usual format for specifying the potential
functions of CRFs [21,22], and the linear form allows us to
derive an intuitive gradient-based minimization procedure
for parameter estimation. Here, we define fu(dp, cp) to re-
turn cp[dp] (i.e., the matching cost at pixel p given disparity
dp) if u = dp and 0 otherwise. For our experiments in Sec-
tion 5 we fix all θu to one, yielding U(dp, cp) = cp[dp],
since the focus of this paper is on exploring the impact of
learning parameters that modulate disparity smoothness by
image intensity gradients. However, we shall derive learn-
ing equations in the next section using the more general for-
mulation including the θu parameters.

For the V terms we use a gradient-modulated Potts
model [1, 6] to express the relationship between color
changes and depth changes. Unlike existing approaches
that use a single gradient threshold, we use parameters
θv=1, . . . , θv=k as modulation costs associated with each
of K different gradient bins. We define our binary feature
functions such that

V (dp, dq, gpq) =


0 if dp = dq

θv=1 if dp 6= dq and gpq = 1
. . . . . .
θv=k if dp 6= dq and gpq = k,

(8)
where the discrete gradient variable gpq represents the inter-
val containing the real-valued gradient. In Section 5 below
we explore a spectrum of gradient discretization schemes
ranging from one to six intervals, with interval breakpoints
from the set {0, 2, 4, 8, 12, 16,∞}.

A gradient-modulated Potts model is one of the simplest
ways of relating smoothness and color changes. In this
paper we learn CRFs using models with simple structure.
While we expect and indeed find that the benefits of models
in this class are limited, our approach is easily generalized
to more sophisticated models. In future work we plan to
learn more general smoothness terms, e.g., dependent upon
disparity changes |dp − dq|.

3. Learning
To simplify our exposition, we define feature vectors for

each each pixel location p and edge pq as Fp(dp, cp) =
{fu(dp, cp)} and Fpq(dp, dq, gpq) = {fv(dp, dq, gpq)}.

Similar to [31], we define global feature functions as

Fu(D, C) =
∑
p∈P

Fq(dp, cq),

Fv(D,G) =
∑

(p,q)∈N

Fpq(dp, dq, gpq).
(9)

We wish to optimize the parameters Θ = [Θv; Θu] of our
CRF for the log conditional probability of the data, which
can now be expressed as

L(Θ) =
∑

i

log p(Di|Ci, Gi; Θ)

=
∑

i

(
ΘT F(Di,Gi, Ci)− log Z(Ci,Gi)

) (10)

for i = 1 . . . N training images and with F(D,G, C) =
[Fv(D,G);Fu(D, C)]. Under this construction, the analytic
gradient with respect to parameters Θ can be expressed as

∇L ∝
〈
F(D,G, C)

〉
p̃(D,G,C)

−
〈〈

F(D,G, C)
〉

p(D|C,G)

〉
p̃(C,G)

,
(11)

where 〈·〉p denotes the expectation under the probability
distribution p(·), and p̃(·) denotes the empirical distribution
of variables in the argument. The first term in (11) is com-
puted by evaluating our feature functions across our ground
truth disparities, image gradients and costs. The second
term in (11) arises from the gradient of the partition func-
tion. Its outer expectation is computed by observing the
costs C and gradients G for each image and computing the
inner expectation from the corresponding p(D|C,G; Θ). In
linear CRFs this can be done efficiently with a forward-
backward pass analogous to the well-known algorithm used
for HMMs. Sha and Pereira [31] provide a review of meth-
ods for optimizing CRFs when this expectation can be com-
puted exactly. However, here the expectation involving
p(D|C,G) is intractable due to the lattice structure of our
model, and therefore must be approximated.

To achieve this approximation we use the fact that for an
observed C and G in (5) the log partition function is con-
stant. We can thus use the fast alpha-expansion graph-cuts
algorithm [6, 13] to minimize our function for the first two
terms involving V s and Us. This allows us to obtain a good
approximation to the most probable explanation (MPE) un-
der the conditional probability distribution defined by our
model with the current settings of parameters.

Other work [23] has found that loopy belief propagation
can be used effectively to compute approximate marginals
and from them, approximate expectations. However, here
we use graph cuts for approximate MPE inference since it
is faster, and also because the results of [13] suggest that
graph cuts finds lower energy solutions than BP. Once we



Art Books Dolls Laundry Moebius Reindeer
Figure 2. The six datasets used in this paper. Shown is the left image of each pair and the corresponding ground-truth disparities.

have an MPE estimate from running graph cuts we use it
to compute our expectation in a manner similar to the em-
pirical distribution. Training a lattice-structured model us-
ing the approach described here is thus a generalization of
Viterbi path-based methods described in [32]. For our learn-
ing experiments we use straightforward gradient-based up-
dates with a variable learning rate.

4. Datasets

In order to obtain a significant amount of training data
for stereo learning approaches, we have created 30 new
stereo datasets with ground-truth disparities using an auto-
mated version of the structured-lighting technique of [2].
Our datasets are available for use by other researchers
at http://vision.middlebury.edu/stereo/data/.
Each dataset consists of 7 rectified views taken from
equidistant points along a line, as well as ground-truth dis-
parity maps for viewpoints 2 and 6. The images are about
1300 × 1100 pixels (cropped to the overlapping field of
view), with about 150 different integer disparities present.
Each set of 7 views was taken with three different exposures
and under three different lighting conditions, for a total of 9
different images from each viewpoint.

For the work reported in this paper we only use the six
datasets shown in Figure 2: Art, Books, Dolls, Laundry,
Moebius and Reindeer. As input images we use a single im-
age pair (views 2 and 6) taken with the same exposure and
lighting. In future work we plan to ultilize the other views
and the additional datasets for learning from much larger
training sets. To make the images tractable by the graph-cut
stereo matcher, we downsample the original images to one
third of their size, resulting in images of roughly 460× 370
pixels with a disparity range of 80 pixels. The resulting im-
ages are still more challenging than standard stereo bench-
marks such as the Middlebury Teddy and Cones images,
due to their larger disparity range and higher percentage of
untextured surfaces.

Figure 3. Disparity maps of the entire training set for K = 3 pa-
rameters after 0, 10, and 20 iterations. Occluded areas are masked.

5. Experiments

In this section we first examine the convergence of learn-
ing for models with different numbers of parameters θv , us-
ing all six datasets as training set. We then use a leave-one-
out approach to evaluate the performance of the learned pa-
rameters on a new dataset. Finally, we examine how the



Figure 4. Two zoomed views of the disparity maps for K =3 parameters and learning on all six data sets after 0, 5, 10, 15, and 20 iterations.
Occluded areas are masked.
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Figure 5. Learning on all six datasets using models with different numbers of parameters θ. See Table 1 for the learned parameter values.

learned parameters generalize to other datasets.
For our experiments we use a straightforward gradient-

based optimization procedure: we start with a small learn-
ing rate (10−4) and increase it by a small factor unless the
norm of the gradient increases dramatically, in which case
we backtrack and decrease the learning rate.

As mentioned in Section 2, in our experiments here we
focus on learning the θv parameters of the pairwise V poten-
tials, while holding the U potentials fixed with all θu = 1.
To simplify notation, we abbreviate θv=1, θv=2, . . . with
θ1, θ2, . . . below.

It is important to account for the fact that we do not
model occlusions in our CRF. It is well-known that spurious
minimal-cost matches in occluded areas can cause artifacts
in the inferred disparity maps. We therefore use our ground-
truth data to mask out the contributions of variables in oc-
cluded regions to our gradient computation during training.

Intervals 0-2 2-4 4-8 8-12 12-16 16-∞
{θk}, K =1 9.8
{θk}, K =2 15.3 3.7
{θk}, K =3 45.1 0.3 8.7
{θk}, K =4 42.2 0.5 5.6 10.4
{θk}, K =5 42.0 1.6 3.1 5.9 11.3
{θk}, K =6 104 3.9 11.2 3.8 3.0 13.7

Table 1. The gradient bins for K = 1 . . . 6 parameters and the
parameter values θk learned over all six datasets.

5.1. Convergence

We experiment with learning models possessing differ-
ent numbers of parameters {θk}, for K = 1 (i.e., a single
global smoothness weight) to K = 6 (i.e., a parameter for
each of 6 gradient bins). We first demonstrate the effective-
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Figure 6. Gradient norm (top) and disparity errors (bottom) during
learning on all 6 datasets.

ness of the learning by training on all six datasets. It is use-
ful to visualize the disparities predicted by the model over
each iteration of learning. Figures 3 and 4 show how the
disparity maps change during training. For clarity we have
masked the occluded regions in black in these plots, since
our model will assign arbitrary disparities in these areas.
Figure 5 shows convergence of the individual parameters
over 50 iterations. Table 1 shows the discretization strategy
we use for image gradients as well as the final values of the
learned parameters.

Figure 6 (top) shows how the gradient (i.e., difference
between empirical and model expectation) converges to
zero during learning, which indicates that the learning con-
verges to a global minimum. Note that convergence is faster
for fewer parameters. Figure 6 (bottom) shows the dispar-
ity errors during learning. Again, models with fewer pa-
rameters converge more quickly, thus yielding lower errors
faster. However, the models with more parameters even-
tually outperform the simpler models. In Figure 6 (top) we
observe that there appears to be an initial phase (e.g., during
the first 25 iterations) where the norm of the approximate
gradient monotonically decreases during the optimization.
After this point, models with larger numbers of parame-
ters appear to have less stability. This effect may be as a
result of noisy gradient approximations due to our use of
graph-cut-derived MPEs for the model expectation term of
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Figure 7. Results of leave-one-out learning on the Moebius dataset.
Top: Moebius disparity errors using the parameters obtained dur-
ing learning from the other 5 datasets. Bottom: Moebius disparity
errors using the parameters learned from the dataset itself.

our gradient.

5.2. Performance of learned parameters

We now use 5 of the 6 datasets for training, and eval-
uate the disparity error of the remaining dataset using the
parameters obtained during training. Figure 7 shows the re-
sults for the Moebius dataset. The top plot shows the errors
during leave-one-out training. One can observe a similar
trend as in figure Figure 6 (bottom), namely that the errors
decrease during learning, and that the more complex models
eventually outperform the simpler models. For comparison,
the bottom plot in Figure 7 shows the errors when using
the Moebius dataset itself for training. In this case find-
ing a low-gradient solution means that we have effectively
matched the distribution of disparity changes and associated
intensity gradients of the ground-truth image. Not surpris-
ingly, this results in lower errors, but not significantly lower
than in the top plot — which indicates that the parameters
learned from the other 5 images generalize reasonably well.

Figure 8 shows the equivalent plots for a different
dataset, Reindeer. Again we show the errors during leave-
one-out training at the top and those during training on the
dataset itself on the bottom. Here we get slightly different
results. First, the leave-one-out results no longer indicate
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Figure 8. Results of leave-one-out learning on the Reindeer
dataset. Top: Disparity errors using the parameters obtained dur-
ing learning from the other 5 datasets. Bottom: Disparity errors
using the parameters learned from the dataset itself.

that performance increases with the number of parameters.
In fact the model with K = 2 does best in the end. But
the results in the bottom plot (where we train the parame-
ters on the test data itself) show that this is not necessar-
ily a problem of insufficient generalization, but rather that
learning the best parameters (which amounts to matching
the smoothness properties of the ground truth) might not al-
ways yield to lower matching errors. On the other hand,
this could also be due to noisy gradient approximations as
mentioned earlier.

5.3. Performance on standard benchmarks

Finally, we examine how well the parameters learned
from our six datasets generalize to other stereo images. Ta-
ble 2 shows the disparity errors on the Middlebury bench-
mark consisting of the Tsukuba, Venus, Teddy, and Cones
images. We compare these errors with those of the graph
cuts (GC) method [1], which uses a hand-tuned MRF model
with two gradient bins, and the state-of-the-art method by
Sun et al. [10], which uses BP and an explicit occlusion
model. Our average results for K =1 and K =2 are slightly
better than those of GC, and would result in a similar rank-
ing as the GC method in the Middlebury evaluation. The
fact that the errors for the more complex models are higher

Tsukuba Venus Teddy Cones Average
K =1 3.0 1.3 11.1 10.8 6.6
K =2 2.2 1.6 11.3 10.7 6.5
K =3 3.1 2.6 16.4 19.6 10.4
K =4 3.0 2.5 17.3 21.5 11.1
K =5 2.8 2.1 16.4 21.2 10.6
K =6 3.1 2.7 14.5 16.8 9.3

GC 1.9 1.8 16.5 7.7 7.0
BP+occl 1.0 0.2 6.5 4.8 3.1

Table 2. A comparison of models with different numbers of pa-
rameters K trained on our ground-truth data but evaluated on the
Middlebury data set. The last two rows are the performance of
the graph cut implementation of [1] and the symmetric BP method
with occlusion model by Sun et al. [10].

indicates that the learned parameters of those models are
tuned more finely to the characteristics of the training data
and generalize less well to datasets that are quite different.
We include the BP method, which is currently ranked third,
to show the potential of explicit occlusion models. We plan
to adopt our learning approach to such models next.

6. Discussion and conclusion
Our work makes a number of contributions. We pro-

vide a large database of ground-truth stereo datasets that,
for the first time, enables supervised learning methods in
stereo. We also develop a novel conditional random field
(CRF) model for stereo, and present an approximate but ef-
ficient gradient-based learning procedure. This procedure
leverages the effectiveness of graph-cut-based energy mini-
mization to solve a most-probable-explanation (MPE) prob-
lem. The specific model we experimentally investigate in
this paper is a gradient-modulated Potts model with a vary-
ing number of gradient bins.

Our experiments show that models with more parameters
can better capture the relationship between image gradients
and disparity jumps, usually resulting in reduced disparity
errors. On the other hand, our simple scheme using fixed
gradient bins becomes more sensitive to brightness and con-
trast changes as the number of bins increases. This may be
one of the reasons that the more complex learned models
generalize less well to other datasets. Previous applications
of CRFs in text processing have included a Gaussian prior
on parameters to mitigate model overfitting [31]. Such tech-
niques may be worth exploration for stereo. However, we
believe more promising extensions to the approach here in-
clude learning across larger datasets and more robust gradi-
ent binning schemes.

Based on our results, we feel that our proposed frame-
work has great potential. We believe the most promising
avenues for future work include: (1) including an occlu-



sion model, (2) learning more general forms of the pairwise
V potentials, and (3) improving the approximate gradient
computations.
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