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Figure 1. Challenging large-scale multi-view dataset only amenable by local methods. From left to right: four of 113 10-megapixel input

images, and 3D reconstructions by Fuhrmann and Goesele [4], Kuhn et al. [11], and our method. Our method produces the cleanest surfaces

and also fewer holes than [11]. It is able to adjust to varying disparity quality due to its flexible smoothing term employing a TV prior.

Abstract

Local fusion of disparity maps allows fast parallel 3D
modeling of large scenes that do not fit into main mem-
ory. While existing methods assume a constant disparity
uncertainty, disparity errors typically vary spatially from
tenths of pixels to several pixels. In this paper we propose
a method that employs a set of Gaussians for different dis-
parity classes, instead of a single error model with only one
variance. The set of Gaussians is learned from the differ-
ence between generated disparity maps and ground-truth
disparities. Pixels are assigned particular disparity classes
based on a Total Variation (TV) feature measuring the local
oscillation behavior of the 2D disparity map. This feature
captures uncertainty caused for instance by lack of texture
or fronto-parallel bias of the stereo method. Experimental
results on several datasets in varying configurations demon-
strate that our method yields improved performance both
qualitatively and quantitatively.

1. Introduction
Constructing detailed geometric 3D models of the world

is still a challenging and open problem in computer vision.

Recent progress in Structure from Motion (SfM) and Multi-

View Stereo (MVS) allows for fast reconstruction of sur-

faces from large image sets. 3D modeling methods can

be categorized into global and local methods based on the

underlying optimization method. Global methods tend to

produce the best surface quality [28, 14] concerning com-

pleteness and accuracy, for example on the Middlebury

multi-view benchmark [22]. Local methods, on the other

hand, yield better scalability [4] and runtime performance

[15, 24]. Even models of arbitrary size can by reconstructed

in parallel without a complex fusion step [11].

Hu and Mordohai [9] show that local MVS methods have

potential to reach a quality similar to global methods. In this

paper we focus on local methods, arguing that the quality

of their results can be further improved by modeling the

uncertainties of 2D disparity maps.

2. Related Work
Surface reconstruction from depth maps has received

considerable interest. Though we focus on methods based

on local optimization, some of the global ones have to be

mentioned as they give the best results. The idea of using

Total Variation (TV) for MVS was introduced by Zach et

al. [32]. They estimate the surface by minimizing a global

energy function containing a TV-L1 regularization term for

increased robustness to outliers, while still allowing effi-

cient convex minimization. The use of TV regularization

dates back to a publication of Rudin et al. [18] on the re-

construction of noisy 2D images. The idea was improved

for MVS by further works [31, 10, 21, 16]. TV is important

for our method, though we do not perform minimization via

global convex optimization.

As mentioned, global methods are limited in practical

applications due to poor scalability and runtime perfor-
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mance. The most promising local methods are volumet-

ric ones employing range image integration, as proposed

by Curless and Levoy [3], on stereo images [5]. The idea

is to extract an iso-surface from numerically occupied vox-

els whose values are estimated by the fusion of signed dis-

tance functions derived from the depth values. The result-

ing volumetric zero crossing defines the surface. Fuhrmann

and Goesele [4] extend this method to handling varying sur-

face qualities by introducing a dynamic voxel size. Kuhn et

al. [11] propose an alternative probabilistic distance func-

tion for multi-resolution voxels, with an additional filtering

step that delivers good results in challenging configurations

that cause noisy spatial data. We employ this approach in

our work.

A great challenge for local methods is the use of a reg-

ularization term. Existing methods consider a varying er-

ror in 3D [4, 14, 9, 11], but a constant error for 2D dispar-

ity. However, disparity quality can vary widely due to many

reasons, including texture variability, motion blur, defocus,

low-quality cameras, bad lighting conditions, compression

artifacts, and priors employed by the stereo method. Our

method analyzes the quality only based on the disparity

map, independent of camera type and configuration. For

integration in MVS we adapt a volumetric approach [3, 11].

Fig. 1 shows sample results by our method demonstrating

improved performance over existing local methods.

Learning priors for stereo and MVS is not new.

Scharstein and Pal [20] learn a CRF model for stereo from

ground-truth disparities. Bao et al. [1] learn priors for se-

mantic categories that consist of the object shape; their

method also utilizes information from the SfM process.

Häne et al. [6] demonstrate how learning semantic priors

for classes such as buildings, ground, vegetation, and clut-

ter can improve the surface quality. The method is based

on joint segmentation, labeling, and classification. In con-

trast, our new TV prior is only based on the input disparities

without a need for semantic modeling.

3. Volumetric Fusion

Scalable local volumetric surface reconstruction is based

on the fusion of cumulative distance functions in efficient

data structures like octrees. The depth of the octree, or re-

spectively the size of the voxel, can be handled dynamically

[4]. The choice of the voxel size is based on the expected

uncertainty of the 3D point [11]. In this section we discuss

our adaptation of the distance function and the correspond-

ing fusion process, providing a brief introduction to both.

3.1. Signed Distance Function

Like Fuhrmann and Goesele [4] as well as Kuhn et

al. [11], we evaluate distance functions depending on the

quality of the depth value in 3D. In contrast to our approach,
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Figure 2. Two alternative cumulative distance functions for an es-

timated depth z. (a) Linear signed distance function d (red) with

a weighting function w (blue) penalizing values behind the esti-

mated surface [3, 4]. (b) Gaussian CDF (red) with indicator func-

tion (blue) bounding the area of influence [11].

however, their approaches do not consider the quality of the

disparities.

A linear signed distance function d [3, 4] assigns neg-

ative values to voxels in front of the estimated depth, and

positive values to those behind (Fig. 2a). Following Kuhn

et al. [11], we instead use a Gaussian cumulative distance

function (CDF) (Fig. 2b), which is transformed into loga-

rithmic ratio space as explained below. The voxels to be

assigned a surface value are chosen by intersection of the

octree with a part of the line of sight. Additionally, a sec-

ond function defines the weight w of this value.

The volumetric update process for voxels on the line of

sight accumulates the contributions from individual pixels.

For the linear function it follows two equations [3]:

Wi+1(v) = Wi(v) + wi+1(v) , (1)

Di+1(v) =
Wi(v)Di(v) + wi+1(v)di+1(v)

Wi+1(v)
, (2)

where di(v) is the discretized value of the cumulative

signed distance function and Di(v) characterizes the cur-

rent discrete representation of voxel v at iteration i. This

value has a range of [−1, 1] and is maintained using Equa-

tions (1) and (2). The individual discretized weight func-

tions wi(v) are accumulated in Wi(v). The weight function

reduces the weight of depth values behind the measured dis-

tance. This is reasonable, because the voting is only mean-

ingful on the line of sight in front of the point.

Curless and Levoy [3] empirically adapt the linear

weighting function depending on the the angle between line

of sight and the normal vector, the slant, of the surface and

on the distance to the next missing measurements. We in-

stead propose a novel TV-based probabilistic function that

also handles slant and missing measurements and is deter-

mined statistically from ground-truth data.

The probabilistic framework [11] is based on the idea of

a point lying on the line of sight with Gaussian uncertainty.

Hence, the CDF calculates the probability p(v1) of a point

on the line of sight to lie behind the surface (Fig. 2b). This

probability is allocated to each voxel intersected by the line

of sight. To estimate the probability of a voxel seen from n
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cameras, the probabilities have to be fused. The update pro-

cess for the CDF is based on Binary Bayes Theory (BBT):

p(v1|D = d) ∝ p(v1)
∏
j

p(Dj = dj |v1) . (3)

In addition to MVS reconstruction [11], fusion of sensor

data via BBT has also been applied to occupancy grid prop-

agation [29, 17, 26].

Each occupied voxel has a probability p(v1) of lying

completely behind the surface, and conversely a probabil-

ity p(v0) = 1 − p(v1) of lying at least partially in front

of the surface. These probabilities in the range [0, 1] are

transformed into a logarithmic ratio space, with values in

the range [−∞,∞], and fused via summation [11]:

l = log
p(v1)

p(v0)
= log

p(v1)

1− p(v1)
=

∑
j

log
p(v1j )

1− p(v1j )
. (4)

Instead of the weighting function w from the linear case,

in the probabilistic formulation we use a “boxcar” indi-

cator function extending ±2σ (Fig. 2b), which limits the

influence of voxels to a narrow region around each esti-

mated depth. This generally yields better results due to in-

creased robustness to outliers. Furthermore, it significantly

decreases the number of voxels to process which allows

for limited memory resources. On the other hand, it can

lead to multiple estimated surfaces, and thus requires post-

processing or filtering. However, multiple surfaces are pos-

sible even without bounding the influence with an indicator

function, as disparity maps are generally incomplete.

In our method we adopt the probabilistic framework [11]

since it integrates naturally with the probability functions

learned from ground-truth data. It also allows extracting

surface probabilities, which can be used for filtering.

3.2. Dynamic Integration

Multi-resolution methods allow for the fusion of data

with strongly differing quality [4, 11]. The probabilistic

signed distance functions from Section 3.1 are fused in a

3D volume on different levels. The level corresponds to the

depth of the octree and the size of the voxel, and is chosen

with respect to the uncertainty of the 3D point. From the

point of view of a probabilistic method with an estimated

standard deviation σx
d of the disparity d at pixel x, the 3D

deviation can be seen as Gaussian [11]:

p(zxd ) = N (zxd , [σ
x
d

(zxd )
2

ft

√
2]2) , (5)

with depth zxd of the 3D point, baseline t, and focal length f .

The depth value zxd is the depth estimated by stereo meth-

ods. The uncertainty in Eq. 5 can be derived by error prop-

agation in stereo configurations, for instance as described

by Molton and Bradey [13]. The estimation of the disparity

uncertainty σx
d is discussed in Section 4.3 below.

The voxel size is chosen using a linear relation of the

error from Equation (5), resulting in a sidelength vs with

σ < avs < 2σ. We use a value of a=6 in all experiments.

On this octree level the voxels are updated by estimating the

CDF for the intersection point with the line of sight. This

probability is fused with probabilities obtained from other

cameras as described in Section 3.1. After propagation from

all disparity maps, each voxel obtains a probability of lying

completely behind a surface.

3.3. Filtering and Meshing

Because of the possible occurrence of multiple surfaces,

the probabilistic space cannot be transformed directly to

polygons. Following Kuhn et al. [11], the probabilistic oc-

tree space is transformed into an optimized pointcloud by

selecting neighboring voxels on the line of sight such that

with maximum probability one is in front and the other be-

hind the surface. The optimized point cloud is then again

transformed to an octree which allows for efficient consis-

tency checks by casting rays from all occupied voxels to

those cameras the point has been seen from.

When conflicts are detected, we remove voxels with

lower surface probability [11]. In addition, voxels on lower

octree levels are removed by voxels on higher levels in or-

der to preserve detail. Finally, the estimated clean point

cloud is transformed to a triangle mesh using a local mesh-

ing method [2].

Fig. 1 illustrates the positive effect of this filtering step

by comparing 3D models reconstructed from the same dis-

parity maps in complex image configurations. The multi-

resolution approach by Fuhrmann and Goesele [4], which is

based on fusion of linear cumulative distance functions, has

strongly noticeable visible artifacts due to multiple surfaces

in the 3D model, which in turn are caused by holes in the

disparity maps. This can be avoided using 3D probabilistic

filtering.

4. Quality Features
In this section we discuss features strongly influencing

the quality of disparities. Based on this discussion, we pro-

pose new TV-based feature classes for disparities covering a

wide range of the influences. Additionally, we show how to

learn the disparity uncertainty from ground-truth disparity

maps in comparison with generated disparity maps for in-

dividual feature classes using an Expectation Maximization

(EM) approach.

We employ Semi-Global Matching (SGM) with census

matching costs for disparity estimation [7, 8]. SGM is espe-

cially suitable for large sets of images as it has low process-

ing time, and still employs pixelwise matching, resulting in

the reconstruction of small details.
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Figure 3. Varying disparity quality. Left: Zoomed region of an

input image of the Ettlingen30 sequence [25]. Right: Surface ori-

entation of the disparity map computed by SGM visualized using a

linear coding from 0◦(light) to 90◦(dark). The surface orientation

gives a good impression of the reconstruction quality. Accuracy

is lower in slanted and untextured regions (left and right red box),

and higher in textured fronto-parallel regions (green box).

4.1. Uncertainties in Stereo Matching

Learning quality classes for disparities is not trivial. The

quality of disparities is affected by many factors. It usu-

ally depends strongly on features such as texture strength

and surface slant (see Fig. 3). Slanted surfaces are problem-

atic for common priors employed by most stereo methods,

including SGM, that favor constant disparities and thus in-

troduce a fronto-parallel bias. Both local and global stereo

methods tend to propagate disparities from textured into

textureless regions, which can lead to errors on slanted and

curved surfaces. This needs to be considered during the fu-

sion of depth maps.

Efficient stereo methods generally obtain subpixel ac-

curacy indirectly by interpolation of neighboring costs.

SGM, for example, estimates subpixel disparities by fitting

a parabola through the three costs values centered on the

winning disparity. Depending on the geometry, this leads to

varying uncertainties for subpixel precision.

Unfortunately, there are several additional features that

can influence the accuracy. MVS is often used for complex

scenes based on registration information from SfM meth-

ods. Depending on scene geometry and texture, the bundle

adjustment error can also range from a fraction of a pixel

to several pixels. Images from mobile phones are increas-

ingly used in computer vision due to their availability in

large numbers. It is well known that the quality of images

from small chips and lenses is limited. Even high-quality

cameras have a limited depth of field and and are subject to

motion blur. It is of prime importance to consider different

qualities also for disparities.

Naively learning these qualities would result in a multi-

variate system where the learning space is defined by fea-

tures covering all of the uncertainties. Two of these fea-

tures would be texture strength and surface slant. The corre-

sponding multivariate uncertainty would have to be learned

for all camera types and perhaps even all types of scenes. As

this is not possible in a generic way, and it is very expensive

to generate ground truth, we focus on estimating the uncer-

tainty from the disparity map directly. For this, we propose

Figure 4. Disparity oscillations. Left: Half-resolution Middle-

bury Piano image [23]. Right: Signed disparity error of SGM

w.r.t. ground truth, coded from -1 (white) to 1 (black). Missing

values are in blue. The error exhibits oscillations with varying

frequency and amplitude depending on the surface slant and the

amount of texture present, as can be observed for instance on the

lamp shade in the top right.

a feature covering important aspects of the uncertainty, par-

ticularly those caused by slant and texture, by analyzing the

local oscillation behavior of the disparity map.

4.2. Local Total Variation

The key question is how disparity uncertainty can be

classified. One possibility would be to estimate the pix-

elwise normal vector for slant, e.g., considering neighbor-

ing disparities in a window, and the image gradient for tex-

ture strength. This leads to two problems: First, the dis-

parity maps show an oscillation with unknown frequency

(see Fig. 4). The window could oversmooth them, but

one could also obtain wrong measurements by undersam-

pling. In Fig. 3 it can be seen that some normal vectors

have large orientation errors in weakly-textured or slanted

regions. Second, learning the distribution of a 2D function

is a hard task since it can lead to the estimation of wrong

correlations. To avoid these problems, we introduce feature

classes based on Total Variation (TV) for estimating the lo-

cal oscillation behavior. This feature represents the dispar-

ity quality in a stable way and can be learned from ground

truth directly.

MVS methods typically use TV in combination with the

L1 norm for increased robustness against outliers. Such

methods use TV-L1 for the estimation of a globally opti-

mal surface from point clouds and aim to limit the influence

of 3D outliers. In contrast, we use the L2 norm since we are

interested in measuring the quality of the disparities, which

includes both noisy measurements and outliers. We focus

on local optimization and employ TV on 2D disparity maps

instead of spatial surfaces. We can thus use the original for-

mulation for 2D signals to express the TV of disparities d
over a neighborhood Ny for a pixel y:

TV (y) =
∑

i,j∈Ny

√
|di+1,j − di,j |2 + |di,j+1 − di,j |2 .

(6)

TV (y) represents the degree of the local oscillation in a

certain neighborhood of pixel y. Unfortunately, oscillations

in local neighborhoods have different frequencies. In par-
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Figure 5. Color visualization of computed TV classes for each

pixel. Left: Input images. Middle: Disparity surface orientation

(as in Fig. 3) providing a good impression of local reconstruction

quality. Right: TV classes measuring disparity smoothness, rang-

ing from 1 (blue) to 20 (red). Fronto-parallel textured surfaces

result in higher-numbered classes.

ticular, fronto-parallel planes cause low frequencies, while

sloping planes lead to high frequencies (cf. Fig. 4). Hence,

it is not feasible to set a constant window for TV estimation.

In addition, we need to discretize the TV term so we

can learn the disparity variance from ground truth for each

discrete level. A reasonable way to limit the discretization

levels is to compute the TV over square windows with in-

creasing radius m while requiring the TV to stay below a

threshold τ . This can be written as:

argmax
n

(
n∑

m=1

1

8m
TVi,j∈xm

< τ) , (7)

where xm describes a series of concentric square “ring-

shaped” neighborhoods with radius m and |xm| = 8m.

That is, in the first step the TV term is calculated for the

eight neighboring pixels. If the value exceeds the thresh-

old, the discretized value n = 1 defines the TV class. If

the TV does not exceed the threshold, TV is calculated con-

sidering the next 16 (8m,m = 2) pixels, until a maximum

of n = 20. This can be done in linear time. For pixels

with missing disparities, a value of ∞ is used. The number

of pixels considered for level m rises with 8m. Hence, the

sum of TV increases with the size of the level. This can be

accounted for by a division of the sum by 8m. In our ex-

periments this regularization leads to better results. We use

a threshold of τ =1 for all experiments. This limits the av-

erage oscillation of the pixels in the neighborhood of pixels

considered in step m to a maximum of one disparity. Fig. 5

shows examples of the computed feature classes.

4.3. Learning TV priors

For the learning step we relate the estimation of the un-

certainty of the disparity to the TV classes n = [1, 20] in-

troduced in the previous section.

We assume that the error for each class follows a com-

bination of a Gaussian Nn(μn, σn) with parameters θn =
μn, σn modeling the disparities, and a uniform distribution

representing outliers. In the stereo case this mixture is con-

sidered a good approximation for the error distribution [27].

We learn our priors using the 2014 Middlebury stereo

datasets with accurate ground truth [19]. We employ

half-resolution versions of the seven images used in [23]

for which public floating-point ground-truth disparities are

available.

After generating the disparity maps, we calculate the

TV class for all pixels of the SGM result with a valid

disparity. The Gaussian is estimated for all classes 0 <
n ≤ 20 by an Expectation Maximization (EM) method

argmaxθn p(θn|Dn). The dataDn describes the set of mea-

sured differences between the ground truth and the value

based on the SGM results, assigned to class n.

The reason for using EM instead of Maximum Likeli-

hood (ML) estimation is that we consider mixture functions.

It is well known that for EM learning a good initial estima-

tion is required. We found that by a ML estimation suit-

able initial functions can be obtained. The calculation of

expected value and variance with ML is:

μ =
1

n

n∑
i=1

(di − gi) , σ
2 =

1

n

n∑
i=1

(di − gi − μ)2 , (8)

with disparity d and ground truth g for n measurements.

These functions are used as initial state for the EM. For

the estimation of an outlier probability we count measure-

ments that lie in an area of five σ. The ratio of the number

of outliers and the number of measurements defines an out-

lier probability and is used for the uniform function of the

mixture. In the E step the measurements are assigned to the

Gaussian or the uniform function depending on their prob-

ability. In the M step ML estimation is used again for esti-

mation of the Gaussian parameters. Afterwards the outlier

probability can be obtained as described above. We found

that a single EM step yields sufficiently good results.

The resulting expected values and standard deviations

for the EM estimation for the 20 classes are shown in Ta-

ble 1. As expected, the standard deviations for the low-

numbered classes (which represent large oscillations) are

high, and then decrease quickly in the higher classes. In-

terestingly, it appears that there is also a positive disparity

offset of up to one pixel in the low classes. The likely reason

are foreshortening effects [30], since the TV also measures

surface slant.

TV class 1 2 3 4 5 6 7 8 9 10

μEM 0.98 0.48 0.11 0.04 0.03 0.03 0 -0.03 -0.03 -0.03

σEM 4.44 3.11 1.65 1.07 0.67 0.50 0.40 0.33 0.34 0.34

TV class 11 12 13 14 15 16 17 18 19 20

μEM -0.03 -0.03 -0.02 -0.02 -0.02 -0.01 0 0.01 0.01 -0.01

σEM 0.30 0.28 0.26 0.24 0.22 0.22 0.21 0.20 0.19 0.18

Table 1. Learned expected value and standard deviations in pixels

for the 20 TV classes.
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5. Experiments

In this section we show qualitative and quantitative re-

sults on established test data as well as novel real-world

datasets. We compare surfaces reconstructed using constant

standard deviations σ ranging from 0.5 to 4 pixels with sur-

faces reconstructed with variable TV-based standard devia-

tion. (Kuhn et al. [11] use a constant σ=1.) In all cases the

TV prior yields results that match or exceed the best results

obtainable with constant σ in terms of accuracy and com-

pleteness. In general, the surfaces produced with σ=4 tend

to be best in terms of completeness (fewest holes) but are

Figure 6. Constant vs. TV-based priors. Each group of 6 pictures

shows models reconstructed from the Ettlingen30 dataset, com-

paring reconstructions with constant σ, our new TV-based prior,

and the textured TV model. The TV-based reconstruction yields

highest completeness and accuracy.

overly smooth, while the surfaces for σ = 0.5 appear best

in terms of accuracy (most detail captured), but have many

holes. Using a variable TV-based prior (σ=TV ) combines

the best of both worlds.

The Ettlingen30 dataset [25] (cf. Fig. 6) is well suited

for demonstrating our method, as the images have vary-

ing perspectives and texture with varying strength. There

are two types of difficulties affecting the disparity qual-

ity: a lack of texture because of the white walls, and the

slanted surfaces, which produce uncertainties because of

SGM’s fronto-parallel bias. In both cases the TV prior

highly weights the textured and fronto-parallel planes. The

TV-derived standard deviation leads to the best quality, es-

pecially in the areas with many details, comparable to the

one with standard deviation 0.5 or 1, but also best quality

with respect to completeness, comparable to the results with

standard deviation 4.

Additionally, a numerical evaluation on established

datasets is of high importance. Strecha et al. [25] provided

a numerical evaluation on real-world datasets, which unfor-

tunately is no longer available. Fortunately, for two datasets

the ground truth is made public. However, for the special

configurations of these datasets with mostly fronto-parallel

surfaces and highly textured areas only a small increase in

quality can be shown.

Fig. 7 shows the 3D surface models by Fuhrmann and

Goesele [4] and by our TV-based method. Our method does

particularly well in recovering slanted surfaces.

For the numerical evaluation we employed the technique

proposed by Strecha et al. [25]. In the original evalua-

tion the errors are compared against the ground-truth un-

certainty. As this information is not available, we employed

the absolute error (cf. Fig. 8). To provide a comparison to a

popular method, we also processed the disparity maps with

the implementation by Fuhrmann and Goesele [4].

For the Herzjesu8 dataset the TV-based surface model

is best in terms of accuracy and completeness. In com-

Figure 7. EttlingenFountain (top) and Herzjesu8 (bottom) 3D sur-

face model by [4] (left) and our method (right). Our method yields

particular improvement for slanted surfaces (red boxes).
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Figure 8. Unsigned cumulative distance functions of the absolute

error from Herzjesu8 (top) and EttlingenFountain (bottom).

parison with the method by [4] the evaluation of the TV-

based model shows a significant improvement. For the Et-

tlingenFountain dataset the TV based surface quality shows

a small loss in accuracy compared to a constant uncertainty.

However, the evaluation results would differ in the high-

resolution regions if the the ground-truth uncertainty were

considered.

We also compared our method with constant-σ versions

using the Middlebury multi-view benchmark [22]. The

datasets cannot show the strength of our method, as the ob-

jects do not have variable textures and difficult perspectives.

Still, the numerical results (cf. Table 2) confirm the qualita-

tive impression from the previous experiments that the TV

results are best concerning accuracy and are mostly best in

completeness. In comparison with σ∈ {0.5,1,2,4}, the TV

results are always close to the best individual accuracy and

completeness scores. Thus, the model with TV prior com-

bines the most details with the highest completeness.

To demonstrate the adaptability of the method, we

present two additional datasets calibrated by a SfM method

[12]. The first dataset comprises 26 36-megapixel images of

a building from different perspectives. The second dataset

with 31 images of 8 MP resolution depicts a painted junk

Temple TempleRing TempleSparse

acc. 0.48/0.45/0.49/0.80/0.43 0.47/0.49/0.59/1.09/0.48 0.44/0.46/0.52/0.71/0.48

compl. 59.5/92.8/97.7/95.1/96.9 77.9/88.3/95.0/91.7/95.7 60.0/77.0/81.8/83.9/84.9
Dino DinoRing DinoSparse

acc. 0.50/0.44/0.46/0.79/0.39 0.49/0.47/0.50/1.12/0.43 0.71/0.49/0.51/1.05/0.49
compl. 71.8/97.1/98.3/95.4/96.3 81.2/94.1/96.7/89.7/95.3 72.1/87.0/92.4/88.3/89.6

Table 2. Evaluation of Dino and Temple with σ = 0.5/1/2/4/TV
concerning accuracy and completeness. Best are marked bold.

Figure 9. Reconstruction of a building. The two boxes each show:

Upper left: Zoomed part of one of 26 36-megapixel images. Up-

per right: The resulting 3D surface by Fuhrmann and Goesele [4]

shows noisy parts, e.g., around the seat bench, on the ground,

and at the weakly textured door. Lower left: In the 3D model

by Kuhn et al. [11] the surfaces contain holes in weakly textured

and slanted areas. Lower right: Our method offers a good trade-off

between completeness and clean surfaces and also excels at recov-

ering highly slanted surfaces such as the ground in the bottom box.

car. Figs. 9 and 10 show both an example image and 3D

models from competing methods as in Fig. 1. In both cases

our method yields the best results and allows for the recon-

struction of clean and dense surfaces also in weakly textured

and slanted areas.

Figure 10. Reconstruction of a junk car. Upper left: Original im-

age part. Upper right: 3D model by [4]. Lower left: 3D model by

[11]. Lower right: our reconstruction.
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6. Conclusion

In this paper, we presented a Total Variation (TV) based

regularization term for Multi View Stereo (MVS). This reg-

ularization term defines disparity quality classes correlated

with the disparity error. The uncertainty is learned from the

difference between generated disparity maps and ground-

truth disparities with an Expectation Maximization (EM)

method, considering noise and outliers. The knowledge

about the quality classes is employed for local volumetric

surface reconstruction, which allows for parallel processing

of very large models. The uncertainties of the classes are

considered when fusing disparity maps into a multi-scale

octree structure. Visual assessment on several datasets in-

dicate a considerable improvement by this means of regu-

larization. We consider this novel modeling of the dispar-

ity uncertainty as an important step towards a better quality

concerning accuracy and completeness for local methods.

We believe that considering variable disparity quality of-

fers great potential for local volumetric reconstruction. This

is because the fusion area has to be known as small uncer-

tainties tend not to intertwine, but larger uncertainties tend

to lead to an oversmooth solution. In future work, we in-

tend to verify additional features and to utilize additional

information, particularly the registration uncertainty.
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